Suppr超能文献

数据驱动的区域生长模型在塑造脑回折叠模式中的作用。

Role of data-driven regional growth model in shaping brain folding patterns.

作者信息

Hou Jixin, Wu Zhengwang, Chen Xianyan, Wang Li, Zhu Dajiang, Liu Tianming, Li Gang, Wang Xianqiao

机构信息

School of Environmental, Civil, Agricultural and Mechanical Engineering, College of Engineering, University of Georgia, Athens, GA 30602, USA.

Department of Radiology and Biomedical Research Imaging Center, The University of North Carolina at Chapel Hill, NC 27599, USA.

出版信息

Soft Matter. 2025 Jan 22;21(4):729-749. doi: 10.1039/d4sm01194e.

Abstract

The surface morphology of the developing mammalian brain is crucial for understanding brain function and dysfunction. Computational modeling offers valuable insights into the underlying mechanisms for early brain folding. Recent findings indicate significant regional variations in brain tissue growth, while the role of these variations in cortical development remains unclear. In this study, we explored how regional cortical growth affects brain folding patterns using computational simulation. We first developed growth models for typical cortical regions using machine learning (ML)-assisted symbolic regression, based on longitudinal real surface expansion and cortical thickness data from prenatal and infant brains derived from over 1000 MRI scans of 735 pediatric subjects with ages ranging from 29 postmenstrual weeks to 2 years of age. These models were subsequently integrated into computational software to simulate cortical development with anatomically realistic geometric models. We comprehensively quantified the resulting folding patterns using multiple metrics such as mean curvature, sulcal depth, and gyrification index. Our results demonstrate that regional growth models generate complex brain folding patterns that more closely match actual brains structures, both quantitatively and qualitatively, compared to conventional uniform growth models. Growth magnitude plays a dominant role in shaping folding patterns, while growth trajectory has a minor influence. Moreover, multi-region models better capture the intricacies of brain folding than single-region models. Our results underscore the necessity and importance of incorporating regional growth heterogeneity into brain folding simulations, which could enhance early diagnosis and treatment of cortical malformations and neurodevelopmental disorders such as cerebral palsy and autism.

摘要

发育中的哺乳动物大脑的表面形态对于理解大脑功能及功能障碍至关重要。计算建模为早期脑回折叠的潜在机制提供了有价值的见解。最近的研究结果表明脑组织生长存在显著的区域差异,而这些差异在皮质发育中的作用仍不明确。在本研究中,我们使用计算模拟探索了区域皮质生长如何影响脑回折叠模式。我们首先基于来自735名年龄在孕后29周龄至2岁的儿科受试者的1000多次MRI扫描得到的产前和婴儿大脑的纵向真实表面扩展和皮质厚度数据,利用机器学习辅助符号回归为典型皮质区域开发了生长模型。这些模型随后被集成到计算软件中,以使用解剖学上逼真的几何模型模拟皮质发育。我们使用多种指标,如平均曲率、脑沟深度和脑回化指数,全面量化了由此产生的折叠模式。我们的结果表明,与传统的均匀生长模型相比,区域生长模型产生的复杂脑回折叠模式在数量和质量上都更接近实际脑结构。生长幅度在塑造折叠模式中起主导作用,而生长轨迹的影响较小。此外,多区域模型比单区域模型能更好地捕捉脑回折叠的复杂性。我们的结果强调了将区域生长异质性纳入脑回折叠模拟的必要性和重要性,这可能会加强对皮质畸形和神经发育障碍(如脑瘫和自闭症)的早期诊断和治疗。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2993/11718650/3ab871031702/d4sm01194e-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验