Suppr超能文献

TR-BREATH:时间反转呼吸率估计和检测。

TR-BREATH: Time-Reversal Breathing Rate Estimation and Detection.

出版信息

IEEE Trans Biomed Eng. 2018 Mar;65(3):489-501. doi: 10.1109/TBME.2017.2699422. Epub 2017 Apr 28.

Abstract

In this paper, we introduce TR-BREATH, a time-reversal (TR)-based contact-free breathing monitoring system. It is capable of breathing detection and multiperson breathing rate estimation within a short period of time using off-the-shelf WiFi devices. The proposed system exploits the channel state information (CSI) to capture the miniature variations in the environment caused by breathing. To magnify the CSI variations, TR-BREATH projects CSIs into the TR resonating strength (TRRS) feature space and analyzes the TRRS by the Root-MUSIC and affinity propagation algorithms. Extensive experiment results indoor demonstrate a perfect detection rate of breathing. With only 10 s of measurement, a mean accuracy of can be obtained for single-person breathing rate estimation under the non-line-of-sight (NLOS) scenario. Furthermore, it achieves a mean accuracy of in breathing rate estimation for a dozen people under the line-of-sight scenario and a mean accuracy of in breathing rate estimation of nine people under the NLOS scenario, both with 63 s of measurement. Moreover, TR-BREATH can estimate the number of people with an error around 1. We also demonstrate that TR-BREATH is robust against packet loss and motions. With the prevailing of WiFi, TR-BREATH can be applied for in-home and real-time breathing monitoring.

摘要

在本文中,我们介绍了 TR-BREATH,这是一种基于时间反转(TR)的非接触式呼吸监测系统。它能够使用现成的 Wi-Fi 设备在短时间内检测呼吸并估计多人的呼吸频率。该系统利用信道状态信息(CSI)来捕捉呼吸引起的环境微小变化。为了放大 CSI 的变化,TR-BREATH 将 CSI 投影到 TR 共振强度(TRRS)特征空间中,并通过 Root-MUSIC 和亲和传播算法分析 TRRS。在室内进行的广泛实验结果表明,该系统能够实现完美的呼吸检测率。仅需 10 秒的测量时间,在非视距(NLOS)场景下,单人呼吸率估计的平均准确率可达 。此外,在视距场景下,对十几个人的呼吸率估计的平均准确率为 ,在 NLOS 场景下,对九个人的呼吸率估计的平均准确率为 ,测量时间均为 63 秒。此外,TR-BREATH 可以估计人数,误差在 1 左右。我们还证明了 TR-BREATH 对丢包和运动具有鲁棒性。随着 Wi-Fi 的普及,TR-BREATH 可用于家庭实时呼吸监测。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验