School of Information & Electrical Engineering, Hebei University of Engineering, Handan 056038, Hebei, China.
Hebei Key Laboratory of Security & Protection Information Sensing and Processing, Handan 056038, Hebei, China.
Sensors (Basel). 2019 Mar 22;19(6):1421. doi: 10.3390/s19061421.
As wireless sensing has developed, wireless behavior recognition has become a promising research area, in which human motion duration is one of the basic and significant parameters to measure human behavior. At present, however, there is no consideration of the duration estimation of human motion leveraging wireless signals. In this paper, we propose a novel system for robust duration estimation of human motion (R-DEHM) with WiFi in the area of interest. To achieve this, we first collect channel statement information (CSI) measurements on commodity WiFi devices and extract robust features from the CSI amplitude. Then, the back propagation neural network (BPNN) algorithm is introduced for detection by seeking a cutting line of the features for different states, i.e., moving human presence and absence. Instead of directly estimating the duration of human motion, we transform the complex and continuous duration estimation problem into a simple and discrete human motion detection by segmenting the CSI sequences. Furthermore, R-DEHM is implemented and evaluated in detail. The results of our experiments show that R-DEHM achieves the human motion detection and duration estimation with the average detection rate for human motion more than 94% and the average error rate for duration estimation less than 8%, respectively.
随着无线传感技术的发展,无线行为识别已成为一个很有前途的研究领域,其中人类运动持续时间是衡量人类行为的基本且重要的参数之一。然而,目前利用无线信号还没有考虑到人类运动持续时间的估计。在本文中,我们提出了一种利用 WiFi 的新颖的无线感知中的人类运动持续时间稳健估计(R-DEHM)系统。为了实现这一目标,我们首先在商品 WiFi 设备上收集信道状态信息(CSI)测量值,并从 CSI 幅度中提取稳健的特征。然后,引入反向传播神经网络(BPNN)算法进行检测,通过寻找不同状态(即移动人体的存在和不存在)的特征的切割线来进行检测。我们没有直接估计人类运动的持续时间,而是通过对 CSI 序列进行分段,将复杂的连续持续时间估计问题转换为简单的离散人类运动检测。此外,还详细地实现和评估了 R-DEHM。我们的实验结果表明,R-DEHM 可以实现人类运动检测和持续时间估计,其人类运动的平均检测率超过 94%,持续时间估计的平均误差率小于 8%。