Suppr超能文献

在一维基因调控网络中聚合计算多模态静态分布。

Aggregation for Computing Multi-Modal Stationary Distributions in 1-D Gene Regulatory Networks.

出版信息

IEEE/ACM Trans Comput Biol Bioinform. 2018 May-Jun;15(3):813-827. doi: 10.1109/TCBB.2017.2699177. Epub 2017 Apr 27.

Abstract

This paper proposes aggregation-based, three-stage algorithms to overcome the numerical problems encountered in computing stationary distributions and mean first passage times for multi-modal birth-death processes of large state space sizes. The considered birth-death processes which are defined by Chemical Master Equations are used in modeling stochastic behavior of gene regulatory networks. Computing stationary probabilities for a multi-modal distribution from Chemical Master Equations is subject to have numerical problems due to the probability values running out of the representation range of the standard programming languages with the increasing size of the state space. The aggregation is shown to provide a solution to this problem by analyzing first reduced size subsystems in isolation and then considering the transitions between these subsystems. The proposed algorithms are applied to study the bimodal behavior of the lac operon of E. coli described with a one-dimensional birth-death model. Thus, the determination of the entire parameter range of bimodality for the stochastic model of lac operon is achieved.

摘要

本文提出了基于聚合的三阶段算法,以克服在计算具有大状态空间大小的多模态生灭过程的静止分布和平均首次通过时间时遇到的数值问题。所考虑的生灭过程由化学主方程定义,用于对基因调控网络的随机行为进行建模。由于状态空间的增大,从化学主方程计算多模态分布的静止概率会遇到数值问题,因为概率值超出了标准编程语言的表示范围。通过分析隔离的较小子系统,然后考虑这些子系统之间的转换,聚合被证明是解决此问题的一种方法。所提出的算法应用于研究大肠杆菌 lac 操纵子的双峰行为,该行为由一维生灭模型描述。因此,实现了随机 lac 操纵子模型的双峰性的整个参数范围的确定。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验