Suppr超能文献

有限缓冲随机分子网络状态空间的最优枚举及稳态景观概率的精确计算。

Optimal enumeration of state space of finitely buffered stochastic molecular networks and exact computation of steady state landscape probability.

作者信息

Cao Youfang, Liang Jie

机构信息

Shanghai Center for Systems Biomedicine (SCSB), Shanghai Jiao Tong University, Shanghai, 200240, China.

出版信息

BMC Syst Biol. 2008 Mar 29;2:30. doi: 10.1186/1752-0509-2-30.

Abstract

BACKGROUND

Stochasticity plays important roles in many molecular networks when molecular concentrations are in the range of 0.1 muM to 10nM (about 100 to 10 copies in a cell). The chemical master equation provides a fundamental framework for studying these networks, and the time-varying landscape probability distribution over the full microstates, i.e., the combination of copy numbers of molecular species, provide a full characterization of the network dynamics. A complete characterization of the space of the microstates is a prerequisite for obtaining the full landscape probability distribution of a network. However, there are neither closed-form solutions nor algorithms fully describing all microstates for a given molecular network.

RESULTS

We have developed an algorithm that can exhaustively enumerate the microstates of a molecular network of small copy numbers under the condition that the net gain in newly synthesized molecules is smaller than a predefined limit. We also describe a simple method for computing the exact mean or steady state landscape probability distribution over microstates. We show how the full landscape probability for the gene networks of the self-regulating gene and the toggle-switch in the steady state can be fully characterized. We also give an example using the MAPK cascade network. Data and server will be available at URL: http://scsb.sjtu.edu.cn/statespace.

CONCLUSION

Our algorithm works for networks of small copy numbers buffered with a finite copy number of net molecules that can be synthesized, regardless of the reaction stoichiometry, and is optimal in both storage and time complexity. The algorithm can also be used to calculate the rates of all transitions between microstates from given reactions and reaction rates. The buffer size is limited by the available memory or disk storage. Our algorithm is applicable to a class of biological networks when the copy numbers of molecules are small and the network is closed, or the network is open but the net gain in newly synthesized molecules does not exceed a predefined buffer capacity. For these networks, our method allows full stochastic characterization of the mean landscape probability distribution, and the steady state when it exists.

摘要

背景

当分子浓度处于0.1微摩尔至10纳摩尔范围内(在一个细胞中约为100至10个拷贝)时,随机性在许多分子网络中发挥着重要作用。化学主方程为研究这些网络提供了一个基本框架,并且在整个微观状态(即分子种类的拷贝数组合)上随时间变化的景观概率分布,提供了网络动态的完整表征。对微观状态空间的完整表征是获得网络完整景观概率分布的先决条件。然而,对于给定的分子网络,既没有封闭形式的解,也没有能完全描述所有微观状态的算法。

结果

我们开发了一种算法,该算法能够在新合成分子的净增量小于预定义限制的条件下,详尽地列举小拷贝数分子网络的微观状态。我们还描述了一种简单的方法,用于计算微观状态上精确的均值或稳态景观概率分布。我们展示了如何完整地表征自调节基因和稳态下的toggle开关基因网络的完整景观概率。我们还给出了一个使用MAPK级联网络的示例。数据和服务器将可通过网址获取:http://scsb.sjtu.edu.cn/statespace。

结论

我们的算法适用于由有限拷贝数的可合成净分子缓冲的小拷贝数网络,无论反应化学计量如何,并且在存储和时间复杂度方面都是最优的。该算法还可用于根据给定的反应和反应速率计算微观状态之间所有转变的速率。缓冲区大小受可用内存或磁盘存储的限制。当分子拷贝数小且网络是封闭的,或者网络是开放的但新合成分子的净增量不超过预定义的缓冲区容量时,我们的算法适用于一类生物网络。对于这些网络,我们的方法允许对均值景观概率分布以及存在时的稳态进行完整的随机表征。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/84ce/2375859/9c72c468003d/1752-0509-2-30-2.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验