Olvedy Michael, Tisserand Julie C, Luciani Flavie, Boeckx Bram, Wouters Jasper, Lopez Sophie, Rambow Florian, Aibar Sara, Thienpont Bernard, Barra Jasmine, Köhler Corinna, Radaelli Enrico, Tartare-Deckert Sophie, Aerts Stein, Dubreuil Patrice, van den Oord Joost J, Lambrechts Diether, De Sepulveda Paulo, Marine Jean-Christophe
Laboratory for Molecular Cancer Biology, Center for Cancer Biology, Vlaams Instituut voor Biotechnologie (VIB), Leuven, Belgium.
Laboratory for Molecular Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium.
J Clin Invest. 2017 Jun 1;127(6):2310-2325. doi: 10.1172/JCI91291. Epub 2017 May 2.
Identification and functional validation of oncogenic drivers are essential steps toward advancing cancer precision medicine. Here, we have presented a comprehensive analysis of the somatic genomic landscape of the widely used BRAFV600E- and NRASQ61K-driven mouse models of melanoma. By integrating the data with publically available genomic, epigenomic, and transcriptomic information from human clinical samples, we confirmed the importance of several genes and pathways previously implicated in human melanoma, including the tumor-suppressor genes phosphatase and tensin homolog (PTEN), cyclin dependent kinase inhibitor 2A (CDKN2A), LKB1, and others. Importantly, this approach also identified additional putative melanoma drivers with prognostic and therapeutic relevance. Surprisingly, one of these genes encodes the tyrosine kinase FES. Whereas FES is highly expressed in normal human melanocytes, FES expression is strongly decreased in over 30% of human melanomas. This downregulation correlates with poor overall survival. Correspondingly, engineered deletion of Fes accelerated tumor progression in a BRAFV600E-driven mouse model of melanoma. Together, these data implicate FES as a driver of melanoma progression and demonstrate the potential of cross-species oncogenomic approaches combined with mouse modeling to uncover impactful mutations and oncogenic driver alleles with clinical importance in the treatment of human cancer.
鉴定致癌驱动因素并进行功能验证是推进癌症精准医学的关键步骤。在此,我们对广泛使用的BRAFV600E和NRASQ61K驱动的黑色素瘤小鼠模型的体细胞基因组图谱进行了全面分析。通过将这些数据与来自人类临床样本的公开可用基因组、表观基因组和转录组信息相结合,我们证实了先前在人类黑色素瘤中涉及的几个基因和途径的重要性,包括肿瘤抑制基因磷酸酶和张力蛋白同源物(PTEN)、细胞周期蛋白依赖性激酶抑制剂2A(CDKN2A)、LKB1等。重要的是,这种方法还鉴定出了其他具有预后和治疗相关性的潜在黑色素瘤驱动因素。令人惊讶的是,其中一个基因编码酪氨酸激酶FES。虽然FES在正常人类黑素细胞中高度表达,但在超过30%的人类黑色素瘤中FES表达强烈降低。这种下调与总体生存率差相关。相应地,在BRAFV600E驱动的黑色素瘤小鼠模型中,通过基因工程删除Fes会加速肿瘤进展。总之,这些数据表明FES是黑色素瘤进展的驱动因素,并证明了跨物种肿瘤基因组学方法与小鼠模型相结合在发现对人类癌症治疗具有临床重要性的有影响的突变和致癌驱动等位基因方面的潜力。