Univ. Paris-Sud, Université Paris-Saclay , C2N, 91405 Orsay, Cedex, France.
Université Paris Nanterre , 92410 Ville d'Avray, France.
ACS Nano. 2017 May 23;11(5):4599-4605. doi: 10.1021/acsnano.7b00150. Epub 2017 May 11.
In this article we address the nanoscale engineering of the effective index of silicon on insulator waveguides by using plasmonic metasurface resonances to realize a graded index lens. We report the design, implementation, and experimental demonstration of this plasmonic metasurface-based graded index lens integrated on a silicon waveguide for operation in the near-infrared domain. The 2D-graded index lens consists of an array of gold cut wires fabricated on the top of a silicon waveguide. These gold cut wires modify locally the effective index of the silicon waveguide and allow the realization of this gradient lens. The reported solution represents a promising alternative to the bulky or multilayered metamaterials approach in the near IR domain. This enabling technology may have found its place in silicon photonic applications by exploiting the plasmonic resonances to control the light at nanoscale.
在本文中,我们通过利用等离子体超表面共振来实现渐变折射率透镜,从而实现了绝缘体上硅波导的有效折射率的纳米级工程。我们报告了这种基于等离子体超表面的渐变折射率透镜的设计、实现和实验演示,该透镜集成在硅波导上,用于近红外波段的工作。二维渐变折射率透镜由在硅波导顶部制造的金切线阵列组成。这些金切线局部地改变了硅波导的有效折射率,从而实现了这种梯度透镜。所报道的解决方案代表了在近红外区域中对庞大或多层超材料方法的有前途的替代方案。这种使能技术可能通过利用等离子体共振在纳米尺度上控制光,在硅光子学应用中找到了自己的位置。