Plant Genome. 2017 Mar;10(1). doi: 10.3835/plantgenome2016.05.0046.
Predicting the grain yield performance of three-way hybrids is challenging. Three-way crosses are relevant for hybrid breeding in barley ( L.) and maize ( L.) adapted to East Africa. The main goal of our study was to implement and evaluate genome-wide prediction approaches of the performance of three-way hybrids using data of single-cross hybrids for a scenario in which parental lines of the three-way hybrids originate from three genetically distinct subpopulations. We extended the ridge regression best linear unbiased prediction (RRBLUP) and devised a genomic selection model allowing for subpopulation-specific marker effects (GSA-RRBLUP: general and subpopulation-specific additive RRBLUP). Using an empirical barley data set, we showed that applying GSA-RRBLUP tripled the prediction ability of three-way hybrids from 0.095 to 0.308 compared with RRBLUP, modeling one additive effect for all three subpopulations. The experimental findings were further substantiated with computer simulations. Our results emphasize the potential of GSA-RRBLUP to improve genome-wide hybrid prediction of three-way hybrids for scenarios of genetically diverse parental populations. Because of the advantages of the GSA-RRBLUP model in dealing with hybrids from different parental populations, it may also be a promising approach to boost the prediction ability for hybrid breeding programs based on genetically diverse heterotic groups.
预测三方杂种的籽粒产量表现具有挑战性。三方杂交在适应东非的大麦(L.)和玉米(L.)杂种选育中具有重要意义。我们研究的主要目的是利用单交杂种的数据,实施和评估三方杂种性能的全基因组预测方法,其中三方杂种的亲本系来自三个遗传上不同的亚种群。我们扩展了岭回归最佳线性无偏预测(RRBLUP),并设计了一种基因组选择模型,允许亚种群特异性标记效应(GSA-RRBLUP:一般和亚种群特异性加性 RRBLUP)。使用经验丰富的大麦数据集,我们表明,与 RRBLUP 相比,应用 GSA-RRBLUP 将三方杂种的预测能力从 0.095 提高到 0.308,为所有三个亚种群建模一个加性效应。实验结果进一步通过计算机模拟得到证实。我们的研究结果强调了 GSA-RRBLUP 提高三方杂种全基因组杂种预测能力的潜力,适用于遗传多样化的亲本群体。由于 GSA-RRBLUP 模型在处理来自不同亲本群体的杂种方面的优势,它也可能是提高基于遗传多样化杂种群体的杂种选育计划预测能力的一种有前途的方法。