Suppr超能文献

基于人工智能的 AIHIB 模型预测杂交水稻表现。

Predicting hybrid rice performance using AIHIB model based on artificial intelligence.

机构信息

Department of Plant Production, Collage of Agriculture Science and Natural Resources, Gonbad Kavous University, P.O. Box: 4971799151, Gonbad, Golestan, Iran.

出版信息

Sci Rep. 2022 Jun 11;12(1):9709. doi: 10.1038/s41598-022-13805-x.

Abstract

Hybrid breeding is fast becoming a key instrument in plants' crop productivity. Grain yield performance of hybrids (F1) under different parental genetic features has consequently received considerable attention in the literature. The main objective of this study was to introduce a new method, known as AI_HIB under different parental genetic features using artificial intelligence (AI) techniques. In so doing, the rice cultivars TAM, KHZ, SPD, GHB, IR28, AHM, SHP and their F hybrid were used. Having recorded Grain Yield (GY), Unfertile Panicle Number (UFP), Plant Height (HE), Days to Flowering (DF), Panicle Exertion (PE), Panicle Length (PL), Filled Grain Number (FG), Primary Branches Number (PBN), Flag Leaf Length (FLL), Flag Leaf Width (FLW), Flag Leaf Area (FLA), and Plant Biomass (BI) in the field, we include these features in our proposed model. When using the GA and PSO algorithm to select the features, grain yield had the highest frequency at the input of the Artificial Neural Network (ANN), Adaptive Neuro-Fuzzy Inference System (ANFIS) and Support Vector Machine (SVM) structure. The AI_HIB_ANN result revealed that the trained neural network with parental data enjoyed a good ability to predict the response of hybrid performance. Findings also reflected that the obtained MSE was low and R value was greater than 96%. AI_HIB_SVM and AI_HIB_ANFIS showed that measuring attributes could predict number of primary branches, plant height, days to flowering and grain yield per plant with accuracies of 99%. These findings have significant implications as it presents a new promising prediction method for hybrid rice yield based on the characteristics of the parent lines by AI. These findings contribute to provide a basis for designing a smartphone application in terms of the AI_HIB_SVM and AI_HIB_ANFIS methods to easily predict hybrid performance with a high accuracy rate.

摘要

杂种优势利用正迅速成为提高作物生产力的关键手段。因此,杂种(F1)在不同亲本遗传特性下的产量表现受到了文献的广泛关注。本研究的主要目的是引入一种新方法,即人工智能(AI)技术下的 AI_HIB,并利用 TAM、KHZ、SPD、GHB、IR28、AHM、SHP 及其杂种 F1 水稻品种进行验证。在田间记录了粒重(GY)、无效穗数(UFP)、株高(HE)、始穗期(DF)、穗下茎长(PE)、穗长(PL)、实粒数(FG)、一次枝梗数(PBN)、剑叶长(FLL)、剑叶宽(FLW)、剑叶面积(FLA)和植株生物量(BI)等特征。在提出的模型中,我们将这些特征包括在内。当使用 GA 和 PSO 算法选择特征时,在人工神经网络(ANN)、自适应神经模糊推理系统(ANFIS)和支持向量机(SVM)结构的输入中,产量出现的频率最高。AI_HIB_ANN 的结果表明,用亲本数据训练的神经网络具有很好的预测杂种表现的能力。研究结果还反映出,所获得的均方误差(MSE)较低,R 值大于 96%。AI_HIB_SVM 和 AI_HIB_ANFIS 表明,通过测量属性可以预测一次枝梗数、株高、始穗期和每株产量,准确率达 99%。这些发现具有重要意义,因为它提出了一种基于亲本系特征的新的有前途的杂交水稻产量预测方法。这些发现为基于 AI_HIB_SVM 和 AI_HIB_ANFIS 方法设计智能手机应用程序提供了依据,以便能够以较高的准确率轻松预测杂种表现。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8621/9188612/eae58df7e9ff/41598_2022_13805_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验