Hsu Liang-Yan, Ding Wendu, Schatz George C
Department of Chemistry, Northwestern University , 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States.
J Phys Chem Lett. 2017 May 18;8(10):2357-2367. doi: 10.1021/acs.jpclett.7b00526. Epub 2017 May 11.
In this study, we overview resonance energy transfer between molecules in the presence of plasmonic structures and derive an explicit Förster-type expression for the rate of plasmon-coupled resonance energy transfer (PC-RET). The proposed theory is general for energy transfer in the presence of materials with any space-dependent, frequency-dependent, or complex dielectric functions. Furthermore, the theory allows us to develop the concept of a generalized spectral overlap (GSO) J̃ (the integral of the molecular absorption coefficient, normalized emission spectrum, and the plasmon coupling factor) for understanding the wavelength dependence of PC-RET and to estimate the rate of PC-RET W. Indeed, W = (8.785 × 10 mol) ϕτJ̃, where ϕ is donor fluorescence quantum yield and τ is the emission lifetime. Simulations of the GSO for PC-RET show that the most important spectral region for PC-RET is not necessarily near the maximum overlap of donor emission and acceptor absorption. Instead a significant plasmonic contribution can involve a different spectral region from the extinction maximum of the plasmonic structure. This study opens a promising direction for exploring exciton transport in plasmonic nanostructures, with possible applications in spectroscopy, photonics, biosensing, and energy devices.
在本研究中,我们概述了在存在等离子体结构的情况下分子间的共振能量转移,并推导了等离子体耦合共振能量转移(PC-RET)速率的显式福斯特型表达式。所提出的理论对于在具有任何空间依赖、频率依赖或复介电函数的材料存在下的能量转移具有通用性。此外,该理论使我们能够发展广义光谱重叠(GSO)J̃(分子吸收系数、归一化发射光谱和等离子体耦合因子的积分)的概念,以理解PC-RET的波长依赖性并估计PC-RET的速率W。实际上,W = (8.785 × 10 mol) ϕτJ̃,其中ϕ是供体荧光量子产率,τ是发射寿命。PC-RET的GSO模拟表明,PC-RET最重要的光谱区域不一定在供体发射和受体吸收的最大重叠附近。相反,显著的等离子体贡献可能涉及与等离子体结构消光最大值不同的光谱区域。这项研究为探索等离子体纳米结构中的激子传输开辟了一个有前景的方向,在光谱学、光子学、生物传感和能量器件中可能有应用。