Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University , Xiamen 361005, P. R. China.
Department of Chemistry, University of Chicago , 929 East 57th Street, Chicago, Illinois 60637, United States.
J Am Chem Soc. 2017 May 24;139(20):7020-7029. doi: 10.1021/jacs.7b02470. Epub 2017 May 10.
The dimensionality dependency of resonance energy transfer is of great interest due to its importance in understanding energy transfer on cell membranes and in low-dimension nanostructures. Light harvesting two-dimensional metal-organic layers (2D-MOLs) and three-dimensional metal-organic frameworks (3D-MOFs) provide comparative models to study such dimensionality dependence with molecular accuracy. Here we report the construction of 2D-MOLs and 3D-MOFs from a donor ligand 4,4',4″-(benzene-1,3,5-triyl-tris(ethyne-2,1-diyl))tribenzoate (BTE) and a doped acceptor ligand 3,3',3″-nitro-4,4',4″-(benzene-1,3,5-triyl-tris(ethyne-2,1-diyl))tribenzoate (BTE-NO). These 2D-MOLs and 3D-MOFs are connected by similar hafnium clusters, with key differences in the topology and dimensionality of the metal-ligand connection. Energy transfer from donors to acceptors through the 2D-MOL or 3D-MOF skeletons is revealed by measuring and modeling the fluorescence quenching of the donors. We found that energy transfer in 3D-MOFs is more efficient than that in 2D-MOLs, but excitons on 2D-MOLs are more accessible to external quenchers as compared with those in 3D-MOFs. These results not only provide support to theoretical analysis of energy transfer in low dimensions, but also present opportunities to use efficient exciton migration in 2D materials for light-harvesting and fluorescence sensing.
由于共振能量转移的维度相关性对于理解细胞膜上的能量转移和低维纳米结构中的能量转移非常重要,因此它引起了人们的极大兴趣。二维金属-有机层(2D-MOL)和三维金属-有机框架(3D-MOF)的光收集提供了具有分子精度的比较模型,可以研究这种维度相关性。在这里,我们报告了由供体配体 4,4',4″-(苯-1,3,5-三基-三(乙炔-2,1-二基))三苯甲酸酯(BTE)和掺杂受体配体 3,3',3″-硝基-4,4',4″-(苯-1,3,5-三基-三(乙炔-2,1-二基))三苯甲酸酯(BTE-NO)构建的 2D-MOL 和 3D-MOF。这些 2D-MOL 和 3D-MOF 通过类似的铪簇连接,其金属-配体连接的拓扑和维度存在关键差异。通过测量和模拟供体的荧光猝灭来揭示能量从供体到受体通过 2D-MOL 或 3D-MOF 骨架的转移。我们发现,3D-MOF 中的能量转移比 2D-MOL 中的能量转移更有效,但与 3D-MOF 相比,2D-MOL 中的激子更容易受到外部猝灭剂的影响。这些结果不仅为低维能量转移的理论分析提供了支持,而且为利用二维材料中有效的激子迁移进行光收集和荧光传感提供了机会。