Suppr超能文献

玉米螟压力下美国马齿型×欧洲硬粒型杂种优势模式中玉米中亲杂种优势的QTL

QTL for Maize Midparent Heterosis in the Heterotic Pattern American Dent × European Flint under Corn Borer Pressure.

作者信息

Samayoa Luis F, Malvar Rosa A, Butrón Ana

机构信息

Misión Biológica de Galicia, CSICPontevedra, Spain.

出版信息

Front Plant Sci. 2017 Apr 19;8:573. doi: 10.3389/fpls.2017.00573. eCollection 2017.

Abstract

Despite the importance of heterosis and the efforts to comprehend this phenomenon, its molecular bases are still unknown. In this study, we intended to detect Quantitative trait loci (QTL) for mid-parent heterosis under infestation with the Mediterranean corn borer (MCB, Sesamia nonagrioides Lef.) using a North Carolina design III approach with a RIL population derived from a European flint inbred (EP42) × American dent inbred (A637) cross. QTL for heterosis of kernel yield have been positioned in regions corresponding to previously identified QTL for the same trait in different backgrounds. These results reinforce the high congruency of genes controlling heterosis across populations, even when populations have been developed from different heterotic patterns. A high percentage of genetic variation for mid-parent heterosis (Z) for kernel yield could not be explained. Furthermore, genomic regions involved in heterosis for yield and plant height were not found despite the high genetic correlation between Z transformations for kernel yield and plant height. The moderate power in detecting QTL for mid-parent heterosis suggests that many genes with low augmented dominance effects contribute to the genetic architecture of mid-parent heterosis; dominance and additive-additive epistatic effects could also contribute to heterosis. However, results from this and previous studies suggest that the region 8.03-8.05 deserves special attention in future works in order to fine map loci involved in mid-parent heterosis for yield.

摘要

尽管杂种优势很重要,且人们也在努力理解这一现象,但其分子基础仍然未知。在本研究中,我们打算采用北卡罗来纳设计III方法,利用源自欧洲硬质自交系(EP42)×美国马齿自交系(A637)杂交的重组自交系群体,检测地中海玉米螟(Sesamia nonagrioides Lef.)侵染下中亲杂种优势的数量性状位点(QTL)。籽粒产量杂种优势的QTL已定位在与先前在不同背景下鉴定出的同一性状的QTL相对应的区域。这些结果强化了控制杂种优势的基因在不同群体间具有高度一致性,即使这些群体是从不同的杂种优势模式发展而来。籽粒产量中亲杂种优势(Z)的很大一部分遗传变异无法得到解释。此外,尽管籽粒产量和株高的Z变换之间存在高度遗传相关性,但未发现与产量和株高杂种优势相关的基因组区域。检测中亲杂种优势QTL的功效中等,这表明许多具有低加性显性效应的基因对中亲杂种优势的遗传结构有贡献;显性效应和加性-加性上位性效应也可能对杂种优势有贡献。然而,本研究及先前研究的结果表明,在未来的研究中,8.03 - 8.05区域值得特别关注,以便精细定位参与籽粒产量中亲杂种优势的基因座。

相似文献

1
QTL for Maize Midparent Heterosis in the Heterotic Pattern American Dent × European Flint under Corn Borer Pressure.
Front Plant Sci. 2017 Apr 19;8:573. doi: 10.3389/fpls.2017.00573. eCollection 2017.
3
Genetic Dissection of Hybrid Performance and Heterosis for Yield-Related Traits in Maize.
Front Plant Sci. 2021 Nov 30;12:774478. doi: 10.3389/fpls.2021.774478. eCollection 2021.
4
QTL Mapping for Yield and Resistance against Mediterranean Corn Borer in Maize.
Front Plant Sci. 2017 May 8;8:698. doi: 10.3389/fpls.2017.00698. eCollection 2017.
5
Identification of quantitative trait loci for kernel-related traits and the heterosis for these traits in maize (Zea mays L.).
Mol Genet Genomics. 2020 Jan;295(1):121-133. doi: 10.1007/s00438-019-01608-1. Epub 2019 Sep 11.
6
High congruency of QTL positions for heterosis of grain yield in three crosses of maize.
Theor Appl Genet. 2010 Jan;120(2):321-32. doi: 10.1007/s00122-009-1209-9. Epub 2009 Nov 13.
7
Fine analysis of a genomic region involved in resistance to Mediterranean corn borer.
BMC Plant Biol. 2018 Aug 15;18(1):169. doi: 10.1186/s12870-018-1385-3.
10
Analysis of heterosis and quantitative trait loci for kernel shape related traits using triple testcross population in maize.
PLoS One. 2015 Apr 28;10(4):e0124779. doi: 10.1371/journal.pone.0124779. eCollection 2015.

引用本文的文献

1
Correlation of rice yield based on RILs population QTL analysis.
BMC Genom Data. 2025 Apr 14;26(1):27. doi: 10.1186/s12863-025-01316-3.
2
Validation of QTLs associated with corn borer resistance and grain yield: implications in maize breeding.
Front Plant Sci. 2024 Oct 22;15:1404881. doi: 10.3389/fpls.2024.1404881. eCollection 2024.
5
Temperature-dependent sugar accumulation in interspecific Capsicum F plants showing hybrid weakness.
J Plant Res. 2021 Nov;134(6):1199-1211. doi: 10.1007/s10265-021-01340-1. Epub 2021 Sep 1.
6
Identification of quantitative trait loci for kernel-related traits and the heterosis for these traits in maize (Zea mays L.).
Mol Genet Genomics. 2020 Jan;295(1):121-133. doi: 10.1007/s00438-019-01608-1. Epub 2019 Sep 11.
9
QTL Mapping for Yield and Resistance against Mediterranean Corn Borer in Maize.
Front Plant Sci. 2017 May 8;8:698. doi: 10.3389/fpls.2017.00698. eCollection 2017.

本文引用的文献

1
Yield QTLome distribution correlates with gene density in maize.
Plant Sci. 2016 Jan;242:300-309. doi: 10.1016/j.plantsci.2015.09.022. Epub 2015 Sep 28.
2
Hormone-regulated defense and stress response networks contribute to heterosis in Arabidopsis F1 hybrids.
Proc Natl Acad Sci U S A. 2015 Nov 17;112(46):E6397-406. doi: 10.1073/pnas.1519926112. Epub 2015 Nov 2.
3
Nonsyntenic genes drive highly dynamic complementation of gene expression in maize hybrids.
Plant Cell. 2014 Oct;26(10):3939-48. doi: 10.1105/tpc.114.130948. Epub 2014 Oct 14.
5
Genetic basis of grain yield heterosis in an "immortalized F₂" maize population.
Theor Appl Genet. 2014 Oct;127(10):2149-58. doi: 10.1007/s00122-014-2368-x. Epub 2014 Aug 8.
6
Genome properties and prospects of genomic prediction of hybrid performance in a breeding program of maize.
Genetics. 2014 Aug;197(4):1343-55. doi: 10.1534/genetics.114.165860. Epub 2014 May 21.
7
Progress toward understanding heterosis in crop plants.
Annu Rev Plant Biol. 2013;64:71-88. doi: 10.1146/annurev-arplant-042110-103827. Epub 2013 Feb 6.
8
Repeat associated small RNAs vary among parents and following hybridization in maize.
Proc Natl Acad Sci U S A. 2012 Jun 26;109(26):10444-9. doi: 10.1073/pnas.1202073109. Epub 2012 Jun 11.
10
Differentiation of the maize subgenomes by genome dominance and both ancient and ongoing gene loss.
Proc Natl Acad Sci U S A. 2011 Mar 8;108(10):4069-74. doi: 10.1073/pnas.1101368108. Epub 2011 Feb 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验