Plant Breeding Research Division, Agroscope, Wädenswil, 8820 Zurich, Switzerland.
Université Paris-Saclay, INRAE, CNRS, AgroParisTech, UMR GQE-Le Moulon, 91190 Gif-sur-Yvette, France.
Genetics. 2022 Apr 4;220(4). doi: 10.1093/genetics/iyac018.
Genetic admixture, resulting from the recombination between structural groups, is frequently encountered in breeding populations. In hybrid breeding, crossing admixed lines can generate substantial nonadditive genetic variance and contrasted levels of inbreeding which can impact trait variation. This study aimed at testing recent methodological developments for the modeling of inbreeding and nonadditive effects in order to increase prediction accuracy in admixed populations. Using two maize (Zea mays L.) populations of hybrids admixed between dent and flint heterotic groups, we compared a suite of five genomic prediction models incorporating (or not) parameters accounting for inbreeding and nonadditive effects with the natural and orthogonal interaction approach in single and multienvironment contexts. In both populations, variance decompositions showed the strong impact of inbreeding on plant yield, height, and flowering time which was supported by the superiority of prediction models incorporating this effect (+0.038 in predictive ability for mean yield). In most cases dominance variance was reduced when inbreeding was accounted for. The model including additivity, dominance, epistasis, and inbreeding effects appeared to be the most robust for prediction across traits and populations (+0.054 in predictive ability for mean yield). In a multienvironment context, we found that the inclusion of nonadditive and inbreeding effects was advantageous when predicting hybrids not yet observed in any environment. Overall, comparing variance decompositions was helpful to guide model selection for genomic prediction. Finally, we recommend the use of models including inbreeding and nonadditive parameters following the natural and orthogonal interaction approach to increase prediction accuracy in admixed populations.
遗传混合是结构群体重组的结果,在育种群中经常遇到。在杂种繁殖中,杂交混合系可以产生大量的非加性遗传方差和不同程度的近交,这可能会影响性状变异。本研究旨在测试最近用于模拟近交和非加性效应的方法学进展,以提高混合群体的预测准确性。使用两个玉米(Zea mays L.)杂种群体,这些杂种是在齿状和燧石杂种群之间混合的,我们比较了一套包含(或不包含)考虑近交和非加性效应的参数的五种基因组预测模型,以及在单环境和多环境背景下的自然和正交互作方法。在两个群体中,方差分解表明近交对植物产量、高度和开花时间有强烈影响,这得到了包含这一效应的预测模型的优越性的支持(平均产量的预测能力提高了 0.038)。在大多数情况下,当考虑近交时,显性方差会降低。包含加性、显性、上位性和近交效应的模型似乎是跨性状和群体预测最稳健的模型(平均产量的预测能力提高了 0.054)。在多环境背景下,我们发现当预测尚未在任何环境中观察到的杂种时,包含非加性和近交效应是有利的。总的来说,比较方差分解有助于指导基因组预测的模型选择。最后,我们建议使用包括近交和非加性参数的模型,遵循自然和正交互作方法,以提高混合群体的预测准确性。