Suppr超能文献

在单环境和多环境背景下,利用两个杂交玉米群体的近交和非加性效应提高基因组预测。

Improving genomic predictions with inbreeding and nonadditive effects in two admixed maize hybrid populations in single and multienvironment contexts.

机构信息

Plant Breeding Research Division, Agroscope, Wädenswil, 8820 Zurich, Switzerland.

Université Paris-Saclay, INRAE, CNRS, AgroParisTech, UMR GQE-Le Moulon, 91190 Gif-sur-Yvette, France.

出版信息

Genetics. 2022 Apr 4;220(4). doi: 10.1093/genetics/iyac018.

Abstract

Genetic admixture, resulting from the recombination between structural groups, is frequently encountered in breeding populations. In hybrid breeding, crossing admixed lines can generate substantial nonadditive genetic variance and contrasted levels of inbreeding which can impact trait variation. This study aimed at testing recent methodological developments for the modeling of inbreeding and nonadditive effects in order to increase prediction accuracy in admixed populations. Using two maize (Zea mays L.) populations of hybrids admixed between dent and flint heterotic groups, we compared a suite of five genomic prediction models incorporating (or not) parameters accounting for inbreeding and nonadditive effects with the natural and orthogonal interaction approach in single and multienvironment contexts. In both populations, variance decompositions showed the strong impact of inbreeding on plant yield, height, and flowering time which was supported by the superiority of prediction models incorporating this effect (+0.038 in predictive ability for mean yield). In most cases dominance variance was reduced when inbreeding was accounted for. The model including additivity, dominance, epistasis, and inbreeding effects appeared to be the most robust for prediction across traits and populations (+0.054 in predictive ability for mean yield). In a multienvironment context, we found that the inclusion of nonadditive and inbreeding effects was advantageous when predicting hybrids not yet observed in any environment. Overall, comparing variance decompositions was helpful to guide model selection for genomic prediction. Finally, we recommend the use of models including inbreeding and nonadditive parameters following the natural and orthogonal interaction approach to increase prediction accuracy in admixed populations.

摘要

遗传混合是结构群体重组的结果,在育种群中经常遇到。在杂种繁殖中,杂交混合系可以产生大量的非加性遗传方差和不同程度的近交,这可能会影响性状变异。本研究旨在测试最近用于模拟近交和非加性效应的方法学进展,以提高混合群体的预测准确性。使用两个玉米(Zea mays L.)杂种群体,这些杂种是在齿状和燧石杂种群之间混合的,我们比较了一套包含(或不包含)考虑近交和非加性效应的参数的五种基因组预测模型,以及在单环境和多环境背景下的自然和正交互作方法。在两个群体中,方差分解表明近交对植物产量、高度和开花时间有强烈影响,这得到了包含这一效应的预测模型的优越性的支持(平均产量的预测能力提高了 0.038)。在大多数情况下,当考虑近交时,显性方差会降低。包含加性、显性、上位性和近交效应的模型似乎是跨性状和群体预测最稳健的模型(平均产量的预测能力提高了 0.054)。在多环境背景下,我们发现当预测尚未在任何环境中观察到的杂种时,包含非加性和近交效应是有利的。总的来说,比较方差分解有助于指导基因组预测的模型选择。最后,我们建议使用包括近交和非加性参数的模型,遵循自然和正交互作方法,以提高混合群体的预测准确性。

相似文献

本文引用的文献

4
Heterosis and Hybrid Crop Breeding: A Multidisciplinary Review.杂种优势与杂交作物育种:多学科综述
Front Genet. 2021 Feb 24;12:643761. doi: 10.3389/fgene.2021.643761. eCollection 2021.
7
The genetic architecture of the dynamic changes in grain moisture in maize.玉米籽粒水分动态变化的遗传结构。
Plant Biotechnol J. 2021 Jun;19(6):1195-1205. doi: 10.1111/pbi.13541. Epub 2021 Feb 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验