School of Materials Science and Engineering, Nanyang Technological University , 50 Nanyang Avenue, Singapore 639798, Singapore.
Chemical Sciences and Engineering Division, Argonne National Laboratory , Argonne, Illinois 60439, United States.
ACS Appl Mater Interfaces. 2017 May 24;9(20):17172-17177. doi: 10.1021/acsami.7b04561. Epub 2017 May 12.
Three-dimensional nanoporous carbon frameworks encapsulated Sn nanoparticles (Sn@3D-NPC) are developed by a facile method as an improved lithium ion battery anode. The Sn@3D-NPC delivers a reversible capacity of 740 mAh g after 200 cycles at a current density of 200 mA g, corresponding to a capacity retention of 85% (against the second capacity) and high rate capability (300 mAh g at 5 A g). Compared to the Sn nanoparticles (SnNPs), such improvements are attributed to the 3D porous and conductive framework. The whole structure can provide not only the high electrical conductivity that facilities the electron transfer but also the elasticity that will suppress the volume expansion and aggregation of SnNPs during the charge and discharge process. This work opens a new application of metal-organic frameworks in energy storage.
三维纳米多孔碳框架封装的锡纳米颗粒(Sn@3D-NPC)通过简便的方法开发,作为改进的锂离子电池阳极。Sn@3D-NPC 在 200 mA g 的电流密度下循环 200 次后,可逆容量为 740 mAh g,容量保持率为 85%(相对于第二次容量)和高倍率性能(在 5 A g 下为 300 mAh g)。与锡纳米颗粒(SnNPs)相比,这种改进归因于 3D 多孔和导电框架。整个结构不仅可以提供高导电性,有利于电子转移,还可以提供弹性,在充放电过程中抑制 SnNPs 的体积膨胀和聚集。这项工作为金属有机框架在储能领域的应用开辟了新的途径。