Deng Pan, Yang Jing, Li Shengyang, Fan Tian-E, Wu Hong-Hui, Mou Yun, Huang Hui, Zhang Qiaobao, Peng Dong-Liang, Qu Baihua
Pen-Tung Sah Institute of Micro-Nano Science and Technology, Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen, 361005, People's Republic of China.
College of Automation and Key Laboratory of Industrial Internet of Things and Networked Control, Ministry of Education, Chongqing University of Posts and Telecommunications, Chongqing, 400065, People's Republic of China.
Nanomicro Lett. 2019 Mar 1;11(1):18. doi: 10.1007/s40820-019-0246-4.
The two major limitations in the application of SnO for lithium-ion battery (LIB) anodes are the large volume variations of SnO during repeated lithiation/delithiation processes and a large irreversible capacity loss during the first cycle, which can lead to a rapid capacity fade and unsatisfactory initial Coulombic efficiency (ICE). To overcome these limitations, we developed composites of ultrafine SnO nanoparticles and in situ formed Co(CoSn) nanocrystals embedded in an N-doped carbon matrix using a Co-based metal-organic framework (ZIF-67). The formed Co additives and structural advantages of the carbon-confined SnO/Co nanocomposite effectively inhibited Sn coarsening in the lithiated SnO and mitigated its structural degradation while facilitating fast electronic transport and facile ionic diffusion. As a result, the electrodes demonstrated high ICE (82.2%), outstanding rate capability (~ 800 mAh g at a high current density of 5 A g), and long-term cycling stability (~ 760 mAh g after 400 cycles at a current density of 0.5 A g). This study will be helpful in developing high-performance Si (Sn)-based oxide, Sn/Sb-based sulfide, or selenide electrodes for LIBs. In addition, some metal organic frameworks similar to ZIF-67 can also be used as composite templates.
将SnO应用于锂离子电池(LIB)阳极存在两个主要限制,即SnO在反复锂化/脱锂过程中的体积变化较大,以及在第一个循环中存在较大的不可逆容量损失,这会导致容量迅速衰减和初始库仑效率(ICE)不尽人意。为了克服这些限制,我们使用钴基金属有机框架(ZIF-67)开发了由超细SnO纳米颗粒和原位形成的嵌入N掺杂碳基质中的Co(CoSn)纳米晶体组成的复合材料。所形成的Co添加剂以及碳限制的SnO/Co纳米复合材料的结构优势有效地抑制了锂化SnO中Sn的粗化,并减轻了其结构降解,同时促进了快速的电子传输和便捷的离子扩散。结果,该电极表现出高ICE(82.2%)、出色的倍率性能(在5 A g的高电流密度下约为800 mAh g)和长期循环稳定性(在0.5 A g的电流密度下循环400次后约为760 mAh g)。这项研究将有助于开发用于LIB的高性能Si(Sn)基氧化物、Sn/Sb基硫化物或硒化物电极。此外,一些类似于ZIF-67的金属有机框架也可以用作复合模板。