Poirier Colline, Baumann Simon, Dheerendra Pradeep, Joly Olivier, Hunter David, Balezeau Fabien, Sun Li, Rees Adrian, Petkov Christopher I, Thiele Alexander, Griffiths Timothy D
Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, Tyne and Wear, United Kingdom.
PLoS Biol. 2017 May 4;15(5):e2001379. doi: 10.1371/journal.pbio.2001379. eCollection 2017 May.
This work examined the mechanisms underlying auditory motion processing in the auditory cortex of awake monkeys using functional magnetic resonance imaging (fMRI). We tested to what extent auditory motion analysis can be explained by the linear combination of static spatial mechanisms, spectrotemporal processes, and their interaction. We found that the posterior auditory cortex, including A1 and the surrounding caudal belt and parabelt, is involved in auditory motion analysis. Static spatial and spectrotemporal processes were able to fully explain motion-induced activation in most parts of the auditory cortex, including A1, but not in circumscribed regions of the posterior belt and parabelt cortex. We show that in these regions motion-specific processes contribute to the activation, providing the first demonstration that auditory motion is not simply deduced from changes in static spatial location. These results demonstrate that parallel mechanisms for motion and static spatial analysis coexist within the auditory dorsal stream.
这项研究利用功能磁共振成像(fMRI),探究了清醒猴子听觉皮层中听觉运动处理的潜在机制。我们测试了听觉运动分析在多大程度上可以通过静态空间机制、频谱时间过程及其相互作用的线性组合来解释。我们发现,包括A1以及周围的尾带和旁带在内的后听觉皮层参与了听觉运动分析。静态空间和频谱时间过程能够充分解释听觉皮层大部分区域(包括A1)中运动诱发的激活,但不能解释后带和旁带皮层的特定区域。我们表明,在这些区域中,运动特异性过程促成了激活,首次证明听觉运动并非简单地从静态空间位置的变化中推导出来。这些结果表明,运动和静态空间分析的并行机制共存于听觉背侧流中。