Suppr超能文献

考虑肿瘤纯度可提高基于 DNA 甲基化数据的癌症亚型分类。

Accounting for tumor purity improves cancer subtype classification from DNA methylation data.

机构信息

Department of Mathematics, Shanghai Normal University, Shanghai 200234, China.

School of Science, East China University of Technology, Nanchang, Jiangxi 330013, China.

出版信息

Bioinformatics. 2017 Sep 1;33(17):2651-2657. doi: 10.1093/bioinformatics/btx303.

Abstract

MOTIVATION

Tumor sample classification has long been an important task in cancer research. Classifying tumors into different subtypes greatly benefits therapeutic development and facilitates application of precision medicine on patients. In practice, solid tumor tissue samples obtained from clinical settings are always mixtures of cancer and normal cells. Thus, the data obtained from these samples are mixed signals. The 'tumor purity', or the percentage of cancer cells in cancer tissue sample, will bias the clustering results if not properly accounted for.

RESULTS

In this article, we developed a model-based clustering method and an R function which uses DNA methylation microarray data to infer tumor subtypes with the consideration of tumor purity. Simulation studies and the analyses of The Cancer Genome Atlas data demonstrate improved results compared with existing methods.

AVAILABILITY AND IMPLEMENTATION

InfiniumClust is part of R package InfiniumPurify , which is freely available from CRAN ( https://cran.r-project.org/web/packages/InfiniumPurify/index.html ).

CONTACT

hao.wu@emory.edu or xqzheng@shnu.edu.cn.

SUPPLEMENTARY INFORMATION

Supplementary data are available at Bioinformatics online.

摘要

动机

肿瘤样本分类一直是癌症研究中的一项重要任务。将肿瘤分为不同的亚型对治疗的发展有很大的帮助,并有利于将精准医疗应用于患者。在实践中,从临床环境中获得的实体肿瘤组织样本通常是癌症细胞和正常细胞的混合物。因此,如果不加以适当考虑,从这些样本中获得的数据就是混合信号。如果不考虑“肿瘤纯度”(即癌症组织样本中癌细胞的百分比),它会对聚类结果产生偏差。

结果

在本文中,我们开发了一种基于模型的聚类方法和一个 R 函数,该函数使用 DNA 甲基化微阵列数据来推断肿瘤亚型,并考虑了肿瘤纯度。模拟研究和对癌症基因组图谱数据的分析表明,与现有方法相比,该方法的结果得到了改善。

可用性和实现

InfiniumClust 是 R 包 InfiniumPurify 的一部分,可从 CRAN(https://cran.r-project.org/web/packages/InfiniumPurify/index.html)免费获得。

联系方式

hao.wu@emory.eduxqzheng@shnu.edu.cn

补充信息

补充数据可在 Bioinformatics 在线获取。

相似文献

2
Predicting tumor purity from methylation microarray data.从甲基化微阵列数据预测肿瘤纯度。
Bioinformatics. 2015 Nov 1;31(21):3401-5. doi: 10.1093/bioinformatics/btv370. Epub 2015 Jun 25.

引用本文的文献

8
The Analysis of Gene Expression Data Incorporating Tumor Purity Information.纳入肿瘤纯度信息的基因表达数据分析
Front Genet. 2021 Aug 23;12:642759. doi: 10.3389/fgene.2021.642759. eCollection 2021.
10
A novel single-cell based method for breast cancer prognosis.一种基于单细胞的新型乳腺癌预后方法。
PLoS Comput Biol. 2020 Aug 24;16(8):e1008133. doi: 10.1371/journal.pcbi.1008133. eCollection 2020 Aug.

本文引用的文献

2
Tumor purity and differential methylation in cancer epigenomics.癌症表观基因组学中的肿瘤纯度与差异甲基化
Brief Funct Genomics. 2016 Nov;15(6):408-419. doi: 10.1093/bfgp/elw016. Epub 2016 May 19.
5
Comparing the performance of biomedical clustering methods.比较生物医学聚类方法的性能。
Nat Methods. 2015 Nov;12(11):1033-8. doi: 10.1038/nmeth.3583. Epub 2015 Sep 21.
6
Predicting tumor purity from methylation microarray data.从甲基化微阵列数据预测肿瘤纯度。
Bioinformatics. 2015 Nov 1;31(21):3401-5. doi: 10.1093/bioinformatics/btv370. Epub 2015 Jun 25.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验