Suppr超能文献

来自水生真菌的视黄叉/鸟苷酸环化酶融合蛋白及光遗传学工具RhoGC的表达、纯化及光谱调谐

Expression, purification, and spectral tuning of RhoGC, a retinylidene/guanylyl cyclase fusion protein and optogenetics tool from the aquatic fungus .

作者信息

Trieu Melissa M, Devine Erin L, Lamarche Lindsey B, Ammerman Aaron E, Greco Jordan A, Birge Robert R, Theobald Douglas L, Oprian Daniel D

机构信息

From the Department of Biochemistry, Brandeis University, Waltham, Massachusetts 02454 and.

the Departments of Chemistry and Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut 06269.

出版信息

J Biol Chem. 2017 Jun 23;292(25):10379-10389. doi: 10.1074/jbc.M117.789636. Epub 2017 May 4.

Abstract

RhoGC is a rhodopsin (Rho)-guanylyl cyclase (GC) gene fusion molecule that is central to zoospore phototaxis in the aquatic fungus It has generated considerable excitement because of its demonstrated potential as a tool for optogenetic manipulation of cell-signaling pathways involving cyclic nucleotides. However, a reliable method for expressing and purifying RhoGC is currently lacking. We present here an expression and purification system for isolation of the full-length RhoGC protein expressed in HEK293 cells in detergent solution. The protein exhibits robust light-dependent guanylyl cyclase activity, whereas a truncated form lacking the 17- to 20-kDa N-terminal domain is completely inactive under identical conditions. Moreover, we designed several RhoGC mutants to increase the utility of the protein for optogenetic studies. The first class we generated has altered absorption spectra designed for selective activation by different wavelengths of light. Two mutants were created with blue-shifted (E254D, λ = 390 nm; D380N, λ = 506 nm) and one with red-shifted (D380E, λ = 533 nm) absorption maxima relative to the wild-type protein (λ = 527 nm). We also engineered a double mutant, E497K/C566D, that changes the enzyme to a specific, light-stimulated adenylyl cyclase that catalyzes the formation of cAMP from ATP. We anticipate that this expression/purification system and these RhoGC mutants will facilitate mechanistic and structural exploration of this important enzyme.

摘要

RhoGC是一种视紫红质(Rho)-鸟苷酸环化酶(GC)基因融合分子,是水生真菌游动孢子光趋性的核心。由于其作为一种用于光遗传学操纵涉及环核苷酸的细胞信号通路的工具所展现出的潜力,它引发了极大的关注。然而,目前缺乏一种可靠的表达和纯化RhoGC的方法。我们在此展示一种表达和纯化系统,用于在去污剂溶液中分离在HEK293细胞中表达的全长RhoGC蛋白。该蛋白表现出强大的光依赖性鸟苷酸环化酶活性,而缺少17至20 kDa N端结构域的截短形式在相同条件下完全无活性。此外,我们设计了几个RhoGC突变体,以增加该蛋白在光遗传学研究中的实用性。我们构建的第一类突变体具有改变的吸收光谱,旨在通过不同波长的光进行选择性激活。相对于野生型蛋白(λ = 527 nm),创建了两个蓝移突变体(E254D,λ = 390 nm;D380N,λ = 506 nm)和一个红移突变体(D380E,λ = 533 nm)。我们还构建了一个双突变体E497K/C566D,它将该酶转变为一种特异性的、光刺激的腺苷酸环化酶,可催化由ATP形成cAMP。我们预计这种表达/纯化系统和这些RhoGC突变体将有助于对这种重要酶进行机制和结构探索。

相似文献

2
Structure and monomer/dimer equilibrium for the guanylyl cyclase domain of the optogenetics protein RhoGC.
J Biol Chem. 2017 Dec 29;292(52):21578-21589. doi: 10.1074/jbc.M117.812685. Epub 2017 Nov 8.
4
A Cyclic GMP-Dependent K+ Channel in the Blastocladiomycete Fungus Blastocladiella emersonii.
Eukaryot Cell. 2015 Sep;14(9):958-63. doi: 10.1128/EC.00087-15. Epub 2015 Jul 6.
7
A rhodopsin-guanylyl cyclase gene fusion functions in visual perception in a fungus.
Curr Biol. 2014 Jun 2;24(11):1234-40. doi: 10.1016/j.cub.2014.04.009. Epub 2014 May 15.
10
Evidence of a Ca(2+)-(*)NO-cGMP signaling pathway controlling zoospore biogenesis in the aquatic fungus Blastocladiella emersonii.
Fungal Genet Biol. 2009 Aug;46(8):575-84. doi: 10.1016/j.fgb.2009.04.002. Epub 2009 Apr 23.

引用本文的文献

1
Diversity of rhodopsin cyclases in zoospore-forming fungi.
Proc Natl Acad Sci U S A. 2023 Oct 31;120(44):e2310600120. doi: 10.1073/pnas.2310600120. Epub 2023 Oct 23.
3
Microbial Rhodopsins.
Methods Mol Biol. 2022;2501:1-52. doi: 10.1007/978-1-0716-2329-9_1.
5
An engineered membrane-bound guanylyl cyclase with light-switchable activity.
BMC Biol. 2021 Mar 29;19(1):54. doi: 10.1186/s12915-021-00978-6.
6
Molecular Properties and Optogenetic Applications of Enzymerhodopsins.
Adv Exp Med Biol. 2021;1293:153-165. doi: 10.1007/978-981-15-8763-4_9.
8
Molecular Properties of New Enzyme Rhodopsins with Phosphodiesterase Activity.
ACS Omega. 2020 Apr 27;5(18):10602-10609. doi: 10.1021/acsomega.0c01113. eCollection 2020 May 12.
9
Molecular basis for GTP recognition by light-activated guanylate cyclase RhGC.
FEBS J. 2020 Jul;287(13):2797-2807. doi: 10.1111/febs.15167. Epub 2019 Dec 20.

本文引用的文献

4
A rhodopsin-guanylyl cyclase gene fusion functions in visual perception in a fungus.
Curr Biol. 2014 Jun 2;24(11):1234-40. doi: 10.1016/j.cub.2014.04.009. Epub 2014 May 15.
5
Microbial and animal rhodopsins: structures, functions, and molecular mechanisms.
Chem Rev. 2014 Jan 8;114(1):126-63. doi: 10.1021/cr4003769. Epub 2013 Dec 23.
6
Assembly of an activated rhodopsin-transducin complex in nanoscale lipid bilayers.
Biochemistry. 2014 Jan 14;53(1):127-34. doi: 10.1021/bi4012995. Epub 2013 Dec 20.
7
Protter: interactive protein feature visualization and integration with experimental proteomic data.
Bioinformatics. 2014 Mar 15;30(6):884-6. doi: 10.1093/bioinformatics/btt607. Epub 2013 Oct 24.
8
Relocating the active-site lysine in rhodopsin and implications for evolution of retinylidene proteins.
Proc Natl Acad Sci U S A. 2013 Aug 13;110(33):13351-5. doi: 10.1073/pnas.1306826110. Epub 2013 Jul 31.
9
Chemistry and biology of vision.
J Biol Chem. 2012 Jan 13;287(3):1612-9. doi: 10.1074/jbc.R111.301150. Epub 2011 Nov 10.
10
Preparation of an activated rhodopsin/transducin complex using a constitutively active mutant of rhodopsin.
Biochemistry. 2011 Nov 29;50(47):10399-407. doi: 10.1021/bi201126r. Epub 2011 Nov 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验