From the Institute of Biochemistry, Graz University of Technology, Petersgasse 12/II, 8010 Graz, Austria.
the Max Planck Institute for Medical Research, Jahnstrasse 29, Heidelberg 69120, Germany, and.
J Biol Chem. 2018 Jun 8;293(23):9078-9089. doi: 10.1074/jbc.RA118.003069. Epub 2018 Apr 25.
Genetically targeting biological systems to control cellular processes with light is the concept of optogenetics. Despite impressive developments in this field, underlying molecular mechanisms of signal transduction of the employed photoreceptor modules are frequently not sufficiently understood to rationally design new optogenetic tools. Here, we investigate the requirements for functional coupling of red light-sensing phytochromes with non-natural enzymatic effectors by creating a series of constructs featuring the bacteriophytochrome linked to a guanylate/adenylate cyclase. Incorporating characteristic structural elements important for cyclase regulation in our designs, we identified several red light-regulated fusions with promising properties. We provide details of one light-activated construct with low dark-state activity and high dynamic range that outperforms previous optogenetic tools and expands our toolkit, as demonstrated by manipulation of locomotor activity. The full-length crystal structure of this phytochrome-linked cyclase revealed molecular details of photoreceptor-effector coupling, highlighting the importance of the regulatory cyclase element. Analysis of conformational dynamics by hydrogen-deuterium exchange in different functional states enriched our understanding of phytochrome signaling and signal integration by effectors. We found that light-induced conformational changes in the phytochrome destabilize the coiled-coil sensor-effector linker, which releases the cyclase regulatory element from an inhibited conformation, increasing cyclase activity of this artificial system. Future designs of optogenetic functionalities may benefit from our work, indicating that rational considerations for the effector improve the rate of success of initial designs to obtain optogenetic tools with superior properties.
用光基因靶向生物系统来控制细胞过程是光遗传学的概念。尽管在该领域取得了令人印象深刻的进展,但所采用的光感受器模块的信号转导的潜在分子机制通常还没有得到充分理解,无法合理设计新的光遗传学工具。在这里,我们通过创建一系列将细菌视黄质体与非天然酶效应器连接的构建体,研究了功能偶联红光感应的光敏色素与非天然酶效应器的要求。在我们的设计中纳入了对环化酶调节很重要的特征结构元素,我们鉴定了几种具有有前途特性的红光调控融合体。我们提供了一个具有低暗态活性和高动态范围的光激活构建体的详细信息,该构建体优于以前的光遗传学工具,并扩展了我们的工具包,如通过操纵运动活性所证明的那样。该光感受器-效应器偶联的全长晶体结构揭示了光受体-效应器偶联的分子细节,强调了调节环化酶元件的重要性。在不同功能状态下通过氘氢交换进行构象动力学分析,丰富了我们对光受体信号转导和效应器信号整合的理解。我们发现,光诱导的光敏色素构象变化使螺旋-环-螺旋传感器-效应器接头不稳定,从而将环化酶调节元件从抑制构象中释放出来,增加了该人工系统的环化酶活性。光遗传学功能的未来设计可能会受益于我们的工作,表明对效应器的合理考虑可以提高初始设计获得具有优越性能的光遗传学工具的成功率。