Suppr超能文献

条条大路通罗马?对老年人基于体素和代谢协变及动态血流相关的组间脑网络的比较。

Do all roads lead to Rome? A comparison of brain networks derived from inter-subject volumetric and metabolic covariance and moment-to-moment hemodynamic correlations in old individuals.

机构信息

Department of Biomedical Engineering, New Jersey Institute of Technology, 607 Fenster Hall, University Height, Newark, NJ, 07102, USA.

Department of Preclinical Imaging and Radiopharmacy, Werner Siemens Imaging Center, Eberhard Karls University of Tuebingen, Tübingen, Germany.

出版信息

Brain Struct Funct. 2017 Nov;222(8):3833-3845. doi: 10.1007/s00429-017-1438-7. Epub 2017 May 4.

Abstract

Relationships between spatially remote brain regions in human have typically been estimated by moment-to-moment correlations of blood-oxygen-level dependent signals in resting-state using functional MRI (fMRI). Recently, studies using subject-to-subject covariance of anatomical volumes, cortical thickness, and metabolic activity are becoming increasingly popular. However, question remains on whether these measures reflect the same inter-region connectivity and brain network organizations. In the current study, we systematically analyzed inter-subject volumetric covariance from anatomical MRI images, metabolic covariance from fluorodeoxyglucose positron emission tomography images from 193 healthy subjects, and resting-state moment-to-moment correlations from fMRI images of a subset of 44 subjects. The correlation matrices calculated from the three methods were found to be minimally correlated, with higher correlation in the range of 0.31, as well as limited proportion of overlapping connections. The volumetric network showed the highest global efficiency and lowest mean clustering coefficient, leaning toward random-like network, while the metabolic and resting-state networks conveyed properties more resembling small-world networks. Community structures of the volumetric and metabolic networks did not reflect known functional organizations, which could be observed in resting-state network. The current results suggested that inter-subject volumetric and metabolic covariance do not necessarily reflect the inter-regional relationships and network organizations as resting-state correlations, thus calling for cautions on interpreting results of inter-subject covariance networks.

摘要

人类大脑中空间上遥远的区域之间的关系通常是通过静息态 fMRI 中血氧水平依赖信号的实时相关性来估计的。最近,使用受试者间解剖体积、皮质厚度和代谢活动协方差的研究越来越受欢迎。然而,这些测量方法是否反映了相同的区域间连接和大脑网络组织,仍然存在疑问。在本研究中,我们系统地分析了来自 193 名健康受试者的解剖 MRI 图像的受试者间体积协方差、氟脱氧葡萄糖正电子发射断层扫描图像的代谢协方差,以及来自 44 名受试者子集的静息状态实时相关性。三种方法计算的相关矩阵相关性最小,相关系数在 0.31 左右,重叠连接的比例有限。体积网络的全局效率最高,平均聚类系数最低,倾向于随机网络,而代谢和静息状态网络则具有更类似于小世界网络的特性。体积和代谢网络的社区结构并不反映已知的功能组织,而在静息状态网络中可以观察到这些组织。目前的结果表明,受试者间体积和代谢协方差并不一定反映静息状态相关性的区域间关系和网络组织,因此在解释受试者间协方差网络的结果时需要谨慎。

相似文献

引用本文的文献

6
Similarity between structural and proxy estimates of brain connectivity.大脑连接性的结构估计与代理估计之间的相似性。
J Cereb Blood Flow Metab. 2024 Feb;44(2):284-295. doi: 10.1177/0271678X231204769. Epub 2023 Sep 29.

本文引用的文献

2
Altered Cerebral Blood Flow Covariance Network in Schizophrenia.精神分裂症患者大脑血流协方差网络的改变
Front Neurosci. 2016 Jun 30;10:308. doi: 10.3389/fnins.2016.00308. eCollection 2016.
3
A seed-based cross-modal comparison of brain connectivity measures.基于种子的脑连接性测量的跨模态比较。
Brain Struct Funct. 2017 Apr;222(3):1131-1151. doi: 10.1007/s00429-016-1264-3. Epub 2016 Jul 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验