Suppr超能文献

HCUP SID 填补项目:通过填补缺失的种族数据来提高健康差异研究的统计推断。

The HCUP SID Imputation Project: Improving Statistical Inferences for Health Disparities Research by Imputing Missing Race Data.

机构信息

Department of Epidemiology and Biostatistics, Milken Institute School of Public Health, The George Washington University, Washington, DC.

Department of Mathematics and Statistics, The University of Arkansas at Little Rock, Little Rock, AR.

出版信息

Health Serv Res. 2018 Jun;53(3):1870-1889. doi: 10.1111/1475-6773.12704. Epub 2017 May 4.

Abstract

OBJECTIVE

To identify the most appropriate imputation method for missing data in the HCUP State Inpatient Databases (SID) and assess the impact of different missing data methods on racial disparities research.

DATA SOURCES/STUDY SETTING: HCUP SID.

STUDY DESIGN

A novel simulation study compared four imputation methods (random draw, hot deck, joint multiple imputation [MI], conditional MI) for missing values for multiple variables, including race, gender, admission source, median household income, and total charges. The simulation was built on real data from the SID to retain their hierarchical data structures and missing data patterns. Additional predictive information from the U.S. Census and American Hospital Association (AHA) database was incorporated into the imputation.

PRINCIPAL FINDINGS

Conditional MI prediction was equivalent or superior to the best performing alternatives for all missing data structures and substantially outperformed each of the alternatives in various scenarios.

CONCLUSIONS

Conditional MI substantially improved statistical inferences for racial health disparities research with the SID.

摘要

目的

确定 HCUP 州立住院患者数据库(SID)中缺失数据最合适的插补方法,并评估不同缺失数据方法对种族差异研究的影响。

数据来源/研究环境:HCUP SID。

研究设计

一项新的模拟研究比较了四种插补方法(随机抽取、热甲板、联合多重插补[MI]、条件 MI)对于包括种族、性别、入院来源、中等家庭收入和总费用在内的多个变量的缺失值。该模拟是基于 SID 中的真实数据构建的,以保留其层次数据结构和缺失数据模式。还将来自美国人口普查和美国医院协会(AHA)数据库的额外预测信息纳入插补。

主要发现

对于所有缺失数据结构,条件 MI 预测等同于或优于表现最好的替代方法,并且在各种情况下都大大优于每个替代方法。

结论

条件 MI 极大地提高了 SID 中种族健康差异研究的统计推断。

相似文献

引用本文的文献

本文引用的文献

1
Methods for Handling Missing Variables in Risk Prediction Models.风险预测模型中缺失变量的处理方法。
Am J Epidemiol. 2016 Oct 1;184(7):545-551. doi: 10.1093/aje/kwv346. Epub 2016 Sep 14.
3
Incidence of syndesmotic injury.下胫腓联合损伤的发生率。
Orthopedics. 2014 Mar;37(3):e226-9. doi: 10.3928/01477447-20140225-53.
8
Multiple imputation in a large-scale complex survey: a practical guide.大规模复杂调查中的多重插补:实用指南。
Stat Methods Med Res. 2010 Dec;19(6):653-70. doi: 10.1177/0962280208101273. Epub 2009 Aug 4.
9

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验