Sorbonne Universités, UPMC Univ Paris 06, INSERM UMRS-1158 Neurophysiologie Respiratoire Expérimentale et Clinique, Paris, France.
J Neural Eng. 2017 Aug;14(4):046015. doi: 10.1088/1741-2552/aa714a.
The study of electroencephalographic (EEG) bursts in preterm infants provides valuable information about maturation or prognostication after perinatal asphyxia. Over the last two decades, a number of works proposed algorithms to automatically detect EEG bursts in preterm infants, but they were designed for populations under 35 weeks of post menstrual age (PMA). However, as the brain activity evolves rapidly during postnatal life, these solutions might be under-performing with increasing PMA. In this work we focused on preterm infants reaching term ages (PMA ⩾36 weeks) using multi-feature classification on a single EEG channel.
Five EEG burst detectors relying on different machine learning approaches were compared: logistic regression (LR), linear discriminant analysis (LDA), k-nearest neighbors (kNN), support vector machines (SVM) and thresholding (Th). Classifiers were trained by visually labeled EEG recordings from 14 very preterm infants (born after 28 weeks of gestation) with 36-41 weeks PMA.
The most performing classifiers reached about 95% accuracy (kNN, SVM and LR) whereas Th obtained 84%. Compared to human-automatic agreements, LR provided the highest scores (Cohen's kappa = 0.71) using only three EEG features. Applying this classifier in an unlabeled database of 21 infants ⩾36 weeks PMA, we found that long EEG bursts and short inter-burst periods are characteristic of infants with the highest PMA and weights.
In view of these results, LR-based burst detection could be a suitable tool to study maturation in monitoring or portable devices using a single EEG channel.
研究早产儿的脑电图(EEG)爆发提供了有关围产期窒息后成熟或预后的有价值的信息。在过去的二十年中,许多研究提出了用于自动检测早产儿 EEG 爆发的算法,但这些算法是为胎龄(PMA)在 35 周以下的人群设计的。然而,由于大脑活动在出生后迅速发展,这些解决方案在 PMA 增加时可能表现不佳。在这项工作中,我们专注于达到足月年龄(PMA ⩾36 周)的早产儿,使用单个 EEG 通道上的多特征分类。
比较了基于五种不同机器学习方法的五个 EEG 爆发检测器:逻辑回归(LR)、线性判别分析(LDA)、k-最近邻(kNN)、支持向量机(SVM)和阈值(Th)。分类器是通过来自 14 名非常早产儿(出生于 28 周妊娠后)的视觉标记 EEG 记录进行训练的,这些早产儿的 PMA 为 36-41 周。
表现最佳的分类器达到了约 95%的准确率(kNN、SVM 和 LR),而 Th 获得了 84%的准确率。与人类-自动协议相比,仅使用三个 EEG 特征,LR 提供了最高的分数(Cohen's kappa = 0.71)。在 21 名 PMA ⩾36 周的未标记数据库中应用此分类器,我们发现长 EEG 爆发和短爆发间隔是 PMA 和体重最高的婴儿的特征。
鉴于这些结果,基于 LR 的爆发检测可能是使用单个 EEG 通道研究监测或便携式设备中成熟度的合适工具。