文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Tradict 可通过 100 个标记基因准确预测真核转录状态。

Tradict enables accurate prediction of eukaryotic transcriptional states from 100 marker genes.

机构信息

Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts 02115, USA.

Botanical Institute, Biocenter, University of Cologne, D-50674 Cologne, Germany.

出版信息

Nat Commun. 2017 May 5;8:15309. doi: 10.1038/ncomms15309.


DOI:10.1038/ncomms15309
PMID:28474674
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC5424156/
Abstract

Transcript levels are a critical determinant of the proteome and hence cellular function. Because the transcriptome is an outcome of the interactions between genes and their products, it may be accurately represented by a subset of transcript abundances. We develop a method, Tradict (transcriptome predict), capable of learning and using the expression measurements of a small subset of 100 marker genes to predict transcriptome-wide gene abundances and the expression of a comprehensive, but interpretable list of transcriptional programs that represent the major biological processes and pathways of the cell. By analyzing over 23,000 publicly available RNA-Seq data sets, we show that Tradict is robust to noise and accurate. Coupled with targeted RNA sequencing, Tradict may therefore enable simultaneous transcriptome-wide screening and mechanistic investigation at large scales.

摘要

转录本水平是蛋白质组和细胞功能的关键决定因素。由于转录组是基因及其产物相互作用的结果,因此它可以通过转录本丰度的一个子集来准确表示。我们开发了一种方法 Tradict(转录组预测),能够学习和使用一小部分 100 个标记基因的表达测量值来预测全转录组基因丰度以及代表细胞主要生物学过程和途径的综合但可解释的转录程序的表达。通过分析超过 23000 个公开的 RNA-Seq 数据集,我们表明 Tradict 对噪声具有鲁棒性且准确。Tradict 与靶向 RNA 测序相结合,因此可能能够大规模同时进行全转录组筛选和机制研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/de01/5424156/ba16de4b924b/ncomms15309-f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/de01/5424156/04b0e0a17f47/ncomms15309-f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/de01/5424156/4063c6e0707c/ncomms15309-f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/de01/5424156/4a758eb230dd/ncomms15309-f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/de01/5424156/ba16de4b924b/ncomms15309-f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/de01/5424156/04b0e0a17f47/ncomms15309-f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/de01/5424156/4063c6e0707c/ncomms15309-f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/de01/5424156/4a758eb230dd/ncomms15309-f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/de01/5424156/ba16de4b924b/ncomms15309-f4.jpg

相似文献

[1]
Tradict enables accurate prediction of eukaryotic transcriptional states from 100 marker genes.

Nat Commun. 2017-5-5

[2]
TACO produces robust multisample transcriptome assemblies from RNA-seq.

Nat Methods. 2017-1

[3]
A powerful method for transcriptional profiling of specific cell types in eukaryotes: laser-assisted microdissection and RNA sequencing.

PLoS One. 2012-1-26

[4]
Functional network construction in Arabidopsis using rule-based machine learning on large-scale data sets.

Plant Cell. 2011-9-6

[5]
AtRTD - a comprehensive reference transcript dataset resource for accurate quantification of transcript-specific expression in Arabidopsis thaliana.

New Phytol. 2015-10

[6]
A high-resolution single-molecule sequencing-based Arabidopsis transcriptome using novel methods of Iso-seq analysis.

Genome Biol. 2022-7-7

[7]
Predicting gene regulatory networks of soybean nodulation from RNA-Seq transcriptome data.

BMC Bioinformatics. 2013-9-22

[8]
In the Driver's Seat: The Case for Transcriptional Regulation and Coupling as Relevant Determinants of the Circadian Transcriptome and Proteome in Eukaryotes.

J Biol Rhythms. 2016-2

[9]
Application of the Gini correlation coefficient to infer regulatory relationships in transcriptome analysis.

Plant Physiol. 2012-7-13

[10]
Co-ordination and divergence of cell-specific transcription and translation of genes in arabidopsis root cells.

Ann Bot. 2014-10

引用本文的文献

[1]
Live-cell omics with Raman spectroscopy.

Microscopy (Oxf). 2025-6-26

[2]
DeLTa-Seq: direct-lysate targeted RNA-Seq from crude tissue lysate.

Plant Methods. 2022-8-6

[3]
High-resolution expression profiling of selected gene sets during plant immune activation.

Plant Biotechnol J. 2020-1-27

[4]
From bud formation to flowering: transcriptomic state defines the cherry developmental phases of sweet cherry bud dormancy.

BMC Genomics. 2019-12-12

本文引用的文献

[1]
Pseudomonas syringae Type III Effector HopBB1 Promotes Host Transcriptional Repressor Degradation to Regulate Phytohormone Responses and Virulence.

Cell Host Microbe. 2017-2-8

[2]
Learning Microbial Interaction Networks from Metagenomic Count Data.

J Comput Biol. 2016-6

[3]
Low Dimensionality in Gene Expression Data Enables the Accurate Extraction of Transcriptional Programs from Shallow Sequencing.

Cell Syst. 2016-4-27

[4]
Characterizing transcriptional heterogeneity through pathway and gene set overdispersion analysis.

Nat Methods. 2016-3

[5]
Inferring biological tasks using Pareto analysis of high-dimensional data.

Nat Methods. 2015-1-26

[6]
Gene Ontology Consortium: going forward.

Nucleic Acids Res. 2015-1

[7]
Low-coverage single-cell mRNA sequencing reveals cellular heterogeneity and activated signaling pathways in developing cerebral cortex.

Nat Biotechnol. 2014-10

[8]
Sensitive, multiplex and direct quantification of RNA sequences using a modified RASL assay.

Nucleic Acids Res. 2014-8

[9]
A predictor for predicting Escherichia coli transcriptome and the effects of gene perturbations.

BMC Bioinformatics. 2014-5-13

[10]
Sailfish enables alignment-free isoform quantification from RNA-seq reads using lightweight algorithms.

Nat Biotechnol. 2014-5

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索