Suppr超能文献

从 RNA-Seq 转录组数据预测大豆结瘤的基因调控网络。

Predicting gene regulatory networks of soybean nodulation from RNA-Seq transcriptome data.

机构信息

Department of Computer Science, University of Missouri, Columbia, MO 65211, USA.

出版信息

BMC Bioinformatics. 2013 Sep 22;14:278. doi: 10.1186/1471-2105-14-278.

Abstract

BACKGROUND

High-throughput RNA sequencing (RNA-Seq) is a revolutionary technique to study the transcriptome of a cell under various conditions at a systems level. Despite the wide application of RNA-Seq techniques to generate experimental data in the last few years, few computational methods are available to analyze this huge amount of transcription data. The computational methods for constructing gene regulatory networks from RNA-Seq expression data of hundreds or even thousands of genes are particularly lacking and urgently needed.

RESULTS

We developed an automated bioinformatics method to predict gene regulatory networks from the quantitative expression values of differentially expressed genes based on RNA-Seq transcriptome data of a cell in different stages and conditions, integrating transcriptional, genomic and gene function data. We applied the method to the RNA-Seq transcriptome data generated for soybean root hair cells in three different development stages of nodulation after rhizobium infection. The method predicted a soybean nodulation-related gene regulatory network consisting of 10 regulatory modules common for all three stages, and 24, 49 and 70 modules separately for the first, second and third stage, each containing both a group of co-expressed genes and several transcription factors collaboratively controlling their expression under different conditions. 8 of 10 common regulatory modules were validated by at least two kinds of validations, such as independent DNA binding motif analysis, gene function enrichment test, and previous experimental data in the literature.

CONCLUSIONS

We developed a computational method to reliably reconstruct gene regulatory networks from RNA-Seq transcriptome data. The method can generate valuable hypotheses for interpreting biological data and designing biological experiments such as ChIP-Seq, RNA interference, and yeast two hybrid experiments.

摘要

背景

高通量 RNA 测序(RNA-Seq)是一种革命性的技术,可在系统水平上研究各种条件下细胞的转录组。尽管 RNA-Seq 技术在过去几年中广泛应用于生成实验数据,但很少有计算方法可用于分析这些大量转录数据。从数百个甚至数千个基因的 RNA-Seq 表达数据中构建基因调控网络的计算方法尤其缺乏,且急需这些方法。

结果

我们开发了一种自动化的生物信息学方法,该方法基于细胞在不同阶段和条件下的 RNA-Seq 转录组数据中差异表达基因的定量表达值,整合转录组、基因组和基因功能数据,来预测基因调控网络。我们将该方法应用于大豆根毛细胞在根瘤菌感染后三个不同结瘤发育阶段的 RNA-Seq 转录组数据。该方法预测了一个包含 10 个调控模块的大豆结瘤相关基因调控网络,这 10 个模块在所有三个阶段都通用,另外还分别有 24、49 和 70 个模块与第一、第二和第三阶段分别相关,每个模块都包含一组共表达基因和几个转录因子,它们在不同条件下协同控制其表达。10 个通用调控模块中的 8 个通过至少两种验证得到了验证,例如独立的 DNA 结合基序分析、基因功能富集测试以及文献中的先前实验数据。

结论

我们开发了一种从 RNA-Seq 转录组数据中可靠重建基因调控网络的计算方法。该方法可为解释生物数据和设计生物实验(如 ChIP-Seq、RNA 干扰和酵母双杂交实验)提供有价值的假说。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aaf2/3854569/37deb6ff0e10/1471-2105-14-278-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验