Suppr超能文献

基于规则的机器学习在大规模数据集上构建拟南芥的功能网络。

Functional network construction in Arabidopsis using rule-based machine learning on large-scale data sets.

机构信息

Division of Plant and Crop Sciences, University of Nottingham, Loughborough, Leicestershire, UK.

出版信息

Plant Cell. 2011 Sep;23(9):3101-16. doi: 10.1105/tpc.111.088153. Epub 2011 Sep 6.

Abstract

The meta-analysis of large-scale postgenomics data sets within public databases promises to provide important novel biological knowledge. Statistical approaches including correlation analyses in coexpression studies of gene expression have emerged as tools to elucidate gene function using these data sets. Here, we present a powerful and novel alternative methodology to computationally identify functional relationships between genes from microarray data sets using rule-based machine learning. This approach, termed "coprediction," is based on the collective ability of groups of genes co-occurring within rules to accurately predict the developmental outcome of a biological system. We demonstrate the utility of coprediction as a powerful analytical tool using publicly available microarray data generated exclusively from Arabidopsis thaliana seeds to compute a functional gene interaction network, termed Seed Co-Prediction Network (SCoPNet). SCoPNet predicts functional associations between genes acting in the same developmental and signal transduction pathways irrespective of the similarity in their respective gene expression patterns. Using SCoPNet, we identified four novel regulators of seed germination (ALTERED SEED GERMINATION5, 6, 7, and 8), and predicted interactions at the level of transcript abundance between these novel and previously described factors influencing Arabidopsis seed germination. An online Web tool to query SCoPNet has been developed as a community resource to dissect seed biology and is available at http://www.vseed.nottingham.ac.uk/.

摘要

对公共数据库中的大规模后基因组数据集进行荟萃分析有望提供重要的新生物学知识。包括基因表达共表达研究中的相关分析在内的统计方法已经成为利用这些数据集阐明基因功能的工具。在这里,我们提出了一种强大而新颖的替代方法,使用基于规则的机器学习从微阵列数据集计算基因之间的功能关系。这种方法称为“共预测”,它基于规则内共同出现的基因组的集体能力,能够准确预测生物系统的发育结果。我们使用仅从拟南芥种子生成的公开可用的微阵列数据演示了共预测作为一种强大的分析工具的实用性,以计算功能基因相互作用网络,称为种子共预测网络(SCoPNet)。SCoPNet 预测了在相同发育和信号转导途径中起作用的基因之间的功能关联,而与它们各自的基因表达模式的相似性无关。使用 SCoPNet,我们鉴定了四个新的种子萌发调节剂(ALTERED SEED GERMINATION5、6、7 和 8),并预测了这些新因子与影响拟南芥种子萌发的先前描述的因子之间在转录丰度水平上的相互作用。一个用于查询 SCoPNet 的在线网络工具已作为社区资源开发,用于剖析种子生物学,并可在 http://www.vseed.nottingham.ac.uk/ 上获得。

相似文献

9
Seed bioinformatics.种子生物信息学
Methods Mol Biol. 2011;773:403-19. doi: 10.1007/978-1-61779-231-1_23.

引用本文的文献

10
Seed biology - from lab to field.种子生物学——从实验室到田间
J Exp Bot. 2017 Feb 1;68(4):761-763. doi: 10.1093/jxb/erx021.

本文引用的文献

4
Inferring gene regression networks with model trees.基于模型树推断基因回归网络。
BMC Bioinformatics. 2010 Oct 15;11:517. doi: 10.1186/1471-2105-11-517.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验