Ranger Jochen, Kuhn Jörg-Tobias, Szardenings Carsten
Martin Luther University Halle-Wittenberg, Germany.
University of Münster, Germany.
Br J Math Stat Psychol. 2017 May;70(2):209-224. doi: 10.1111/bmsp.12082. Epub 2017 Feb 3.
Cognitive psychometric models embed cognitive process models into a latent trait framework in order to allow for individual differences. Due to their close relationship to the response process the models allow for profound conclusions about the test takers. However, before such a model can be used its fit has to be checked carefully. In this manuscript we give an overview over existing tests of model fit and show their relation to the generalized moment test of Newey (Econometrica, 53, 1985, 1047) and Tauchen (J. Econometrics, 30, 1985, 415). We also present a new test, the Hausman test of misspecification (Hausman, Econometrica, 46, 1978, 1251). The Hausman test consists of a comparison of two estimates of the same item parameters which should be similar if the model holds. The performance of the Hausman test is evaluated in a simulation study. In this study we illustrate its application to two popular models in cognitive psychometrics, the Q-diffusion model and the D-diffusion model (van der Maas, Molenaar, Maris, Kievit, & Boorsboom, Psychol Rev., 118, 2011, 339; Molenaar, Tuerlinckx, & van der Maas, J. Stat. Softw., 66, 2015, 1). We also compare the performance of the test to four alternative tests of model fit, namely the M test (Molenaar et al., J. Stat. Softw., 66, 2015, 1), the moment test (Ranger et al., Br. J. Math. Stat. Psychol., 2016) and the test for binned time (Ranger & Kuhn, Psychol. Test. Asess.
, 56, 2014b, 370). The simulation study indicates that the Hausman test is superior to the latter tests. The test closely adheres to the nominal Type I error rate and has higher power in most simulation conditions.
认知心理测量模型将认知过程模型嵌入潜在特质框架中,以考虑个体差异。由于它们与反应过程密切相关,这些模型能够得出关于测试者的深刻结论。然而,在使用这样的模型之前,必须仔细检查其拟合度。在本手稿中,我们概述了现有的模型拟合检验,并展示了它们与纽韦(《计量经济学》,53卷,1985年,第1047页)和陶申(《计量经济学杂志》,30卷,1985年,第415页)的广义矩检验的关系。我们还提出了一种新的检验方法,即误设的豪斯曼检验(豪斯曼,《计量经济学》,46卷,1978年,第1251页)。豪斯曼检验包括对同一项目参数的两个估计值进行比较,如果模型成立,这两个估计值应该相似。在一项模拟研究中评估了豪斯曼检验的性能。在这项研究中,我们说明了它在认知心理测量学中两个流行模型,即Q扩散模型和D扩散模型(范德马斯、莫伦纳尔、马里斯、基维特和布斯博姆,《心理学评论》,118卷,2011年,第339页;莫伦纳尔、图尔林克斯和范德马斯,《统计软件杂志》,66卷,2015年,第1页)中的应用。我们还将该检验的性能与四种替代的模型拟合检验进行了比较,即M检验(莫伦纳尔等人,《统计软件杂志》,66卷,2015年,第1页)、矩检验(兰杰等人,《英国数学与统计心理学杂志》,2016年)以及分箱时间检验(兰杰和库恩,《心理测试与评估》,56卷,2014年b期,第370页)。模拟研究表明,豪斯曼检验优于后几种检验。该检验紧密遵循名义第一类错误率,并且在大多数模拟条件下具有更高的检验功效。