Ranger Jochen, Kuhn Jörg-Tobias, Szardenings Carsten
Martin Luther University Halle-Wittenberg.
University of Dortmund.
Multivariate Behav Res. 2020 Nov-Dec;55(6):941-957. doi: 10.1080/00273171.2019.1704676. Epub 2020 Feb 5.
Diffusion-based item response theory models are models for responses and response times on psychological tests, which can be used as measurement models in the same way as standard item response theory models (Tuerlinckx, Molenaar, & van der Maas, 2016). Their range of application, however, is narrowed by the fact that multidimensional versions of the model are not easy to fit. Marginal maximum likelihood estimation (e.g., Molenaar, Tuerlinckx, & van der Maas, 2015a) is computationally intensive and infeasible for multidimensional versions. The weighted least squares estimator of Ranger, Kuhn, and Szardenings (2016) is inefficient. Here, we propose an alternative estimator that is more efficient than the least squares estimator and less demanding than the maximum likelihood estimator. The estimator is based on minimum distance estimation and consists in modeling the sample quantiles and sample covariances. The performance of the estimator is investigated in a simulation study. The simulation study corroborates that the estimator performs well. The application of the estimator is demonstrated with real data.
基于扩散的项目反应理论模型是用于心理测试中反应和反应时间的模型,其可以像标准项目反应理论模型一样用作测量模型(图尔林克斯、莫伦纳尔和范德马斯,2016)。然而,该模型的应用范围因多维版本不易拟合这一事实而受到限制。边际最大似然估计(例如,莫伦纳尔、图尔林克斯和范德马斯,2015a)计算量很大,对于多维版本不可行。兰杰、库恩和萨德宁斯(2016)的加权最小二乘估计效率低下。在此,我们提出一种替代估计器,它比最小二乘估计器更有效,且比最大似然估计器要求更低。该估计器基于最小距离估计,包括对样本分位数和样本协方差进行建模。在一项模拟研究中考察了该估计器的性能。模拟研究证实该估计器表现良好。用实际数据展示了该估计器的应用。