Suppr超能文献

迈向符合 AAPM 工作组第 211 号建议的 PET 自动分割方法评估标准:要求与实施。

Toward a standard for the evaluation of PET-Auto-Segmentation methods following the recommendations of AAPM task group No. 211: Requirements and implementation.

机构信息

Institut Langevin, ESPCI Paris, PSL Research University, CNRS UMR 7587, INSERM U979, Paris, 75012, France.

School of Engineering, Cardiff University, Cardiff, CF24 3AA, United Kingdom.

出版信息

Med Phys. 2017 Aug;44(8):4098-4111. doi: 10.1002/mp.12312. Epub 2017 Jul 2.

Abstract

PURPOSE

The aim of this paper is to define the requirements and describe the design and implementation of a standard benchmark tool for evaluation and validation of PET-auto-segmentation (PET-AS) algorithms. This work follows the recommendations of Task Group 211 (TG211) appointed by the American Association of Physicists in Medicine (AAPM).

METHODS

The recommendations published in the AAPM TG211 report were used to derive a set of required features and to guide the design and structure of a benchmarking software tool. These items included the selection of appropriate representative data and reference contours obtained from established approaches and the description of available metrics. The benchmark was designed in a way that it could be extendable by inclusion of bespoke segmentation methods, while maintaining its main purpose of being a standard testing platform for newly developed PET-AS methods. An example of implementation of the proposed framework, named PETASset, was built. In this work, a selection of PET-AS methods representing common approaches to PET image segmentation was evaluated within PETASset for the purpose of testing and demonstrating the capabilities of the software as a benchmark platform.

RESULTS

A selection of clinical, physical, and simulated phantom data, including "best estimates" reference contours from macroscopic specimens, simulation template, and CT scans was built into the PETASset application database. Specific metrics such as Dice Similarity Coefficient (DSC), Positive Predictive Value (PPV), and Sensitivity (S), were included to allow the user to compare the results of any given PET-AS algorithm to the reference contours. In addition, a tool to generate structured reports on the evaluation of the performance of PET-AS algorithms against the reference contours was built. The variation of the metric agreement values with the reference contours across the PET-AS methods evaluated for demonstration were between 0.51 and 0.83, 0.44 and 0.86, and 0.61 and 1.00 for DSC, PPV, and the S metric, respectively. Examples of agreement limits were provided to show how the software could be used to evaluate a new algorithm against the existing state-of-the art.

CONCLUSIONS

PETASset provides a platform that allows standardizing the evaluation and comparison of different PET-AS methods on a wide range of PET datasets. The developed platform will be available to users willing to evaluate their PET-AS methods and contribute with more evaluation datasets.

摘要

目的

本文旨在定义用于评估和验证 PET 自动分割(PET-AS)算法的标准基准工具的要求,并描述其设计和实现。这项工作遵循了美国医学物理学家协会(AAPM)任命的第 211 任务组(TG211)的建议。

方法

使用 AAPM TG211 报告中发布的建议来得出一组必需的功能,并指导基准测试软件工具的设计和结构。这些项目包括从既定方法中选择适当的代表性数据和参考轮廓,并描述可用的指标。基准的设计方式可以通过包含定制分割方法进行扩展,同时保持其作为新开发的 PET-AS 方法的标准测试平台的主要目的。构建了一个名为 PETASset 的建议框架的实现示例。在这项工作中,评估了代表 PET 图像分割常见方法的一组 PET-AS 方法,以在 PETASset 中测试和演示该软件作为基准平台的功能。

结果

为 PETASset 应用程序数据库构建了临床、物理和模拟体模数据的选择,包括来自宏观标本的“最佳估计”参考轮廓、模拟模板和 CT 扫描。包括特定指标,如 Dice 相似系数(DSC)、阳性预测值(PPV)和灵敏度(S),允许用户将任何给定的 PET-AS 算法的结果与参考轮廓进行比较。此外,还构建了一个用于生成关于 PET-AS 算法相对于参考轮廓的性能评估的结构化报告的工具。为演示而评估的 PET-AS 方法之间的指标一致性值随参考轮廓的变化范围分别为 DSC、PPV 和 S 指标的 0.51 到 0.83、0.44 到 0.86 和 0.61 到 1.00。提供了示例的一致性限,以展示如何使用该软件根据现有最新技术评估新算法。

结论

PETASset 提供了一个平台,允许在广泛的 PET 数据集上标准化不同的 PET-AS 方法的评估和比较。开发的平台将可供愿意评估其 PET-AS 方法并提供更多评估数据集的用户使用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1c87/5575543/6abcc7d5cb82/MP-44-4098-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验