Suppr超能文献

技术说明:用于计算放射组学的CERR扩展:一个用于可重复放射组学研究的综合MATLAB平台。

Technical Note: Extension of CERR for computational radiomics: A comprehensive MATLAB platform for reproducible radiomics research.

作者信息

Apte Aditya P, Iyer Aditi, Crispin-Ortuzar Mireia, Pandya Rutu, van Dijk Lisanne V, Spezi Emiliano, Thor Maria, Um Hyemin, Veeraraghavan Harini, Oh Jung Hun, Shukla-Dave Amita, Deasy Joseph O

机构信息

Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA.

Cancer Research UK, Cambridge Institute, University of Cambridge, Cambridge, UK.

出版信息

Med Phys. 2018 Jun 13. doi: 10.1002/mp.13046.

Abstract

PURPOSE

Radiomics is a growing field of image quantitation, but it lacks stable and high-quality software systems. We extended the capabilities of the Computational Environment for Radiological Research (CERR) to create a comprehensive, open-source, MATLAB-based software platform with an emphasis on reproducibility, speed, and clinical integration of radiomics research.

METHOD

The radiomics tools in CERR were designed specifically to quantitate medical images in combination with CERR's core functionalities of radiological data import, transformation, management, image segmentation, and visualization. CERR allows for batch calculation and visualization of radiomics features, and provides a user-friendly data structure for radiomics metadata. All radiomics computations are vectorized for speed. Additionally, a test suite is provided for reconstruction and comparison with radiomics features computed using other software platforms such as the Insight Toolkit (ITK) and PyRadiomics. CERR was evaluated according to the standards defined by the Image Biomarker Standardization Initiative. CERR's radiomics feature calculation was integrated with the clinically used MIM software using its MATLAB application programming interface.

RESULTS

The CERR provides a comprehensive computational platform for radiomics analysis. Matrix formulations for the compute-intensive Haralick texture resulted in speeds that are superior to the implementation in ITK 4.12. For an image discretized into 32 bins, CERR achieved a speedup of 3.5 times over ITK. The CERR test suite enabled the successful identification of programming errors as well as genuine differences in radiomics definitions and calculations across the software packages tested.

CONCLUSION

The CERR's radiomics capabilities are comprehensive, open-source, and fast, making it an attractive platform for developing and exploring radiomics signatures across institutions. The ability to both choose from a wide variety of radiomics implementations and to integrate with a clinical workflow makes CERR useful for retrospective as well as prospective research analyses.

摘要

目的

放射组学是一个不断发展的图像定量领域,但缺乏稳定且高质量的软件系统。我们扩展了放射学研究计算环境(CERR)的功能,以创建一个全面的、基于MATLAB的开源软件平台,重点在于放射组学研究的可重复性、速度和临床整合。

方法

CERR中的放射组学工具专门设计用于结合CERR的放射学数据导入、转换、管理、图像分割和可视化等核心功能对医学图像进行定量分析。CERR允许对放射组学特征进行批量计算和可视化,并为放射组学元数据提供用户友好的数据结构。所有放射组学计算都进行了向量化以提高速度。此外,还提供了一个测试套件,用于与使用其他软件平台(如Insight Toolkit(ITK)和PyRadiomics)计算的放射组学特征进行重建和比较。CERR根据图像生物标志物标准化倡议定义的标准进行评估。CERR的放射组学特征计算通过其MATLAB应用程序编程接口与临床使用的MIM软件集成。

结果

CERR为放射组学分析提供了一个全面的计算平台。对于计算密集型的哈拉里克纹理的矩阵公式,其速度优于ITK 4.12中的实现。对于离散化为32个区间的图像,CERR比ITK快3.5倍。CERR测试套件能够成功识别编程错误以及所测试软件包之间放射组学定义和计算的真正差异。

结论

CERR的放射组学功能全面、开源且快速,使其成为跨机构开发和探索放射组学特征的有吸引力的平台。能够从多种放射组学实现中进行选择并与临床工作流程集成,使得CERR对回顾性和前瞻性研究分析都很有用。

相似文献

引用本文的文献

本文引用的文献

4
Radiomics: Images Are More than Pictures, They Are Data.放射组学:图像不止是图片,它们是数据。
Radiology. 2016 Feb;278(2):563-77. doi: 10.1148/radiol.2015151169. Epub 2015 Nov 18.
8
3D Slicer as an image computing platform for the Quantitative Imaging Network.3D Slicer 作为定量成像网络的图像计算平台。
Magn Reson Imaging. 2012 Nov;30(9):1323-41. doi: 10.1016/j.mri.2012.05.001. Epub 2012 Jul 6.
10
On developing B-spline registration algorithms for multi-core processors.关于多核处理器上 B 样条配准算法的开发。
Phys Med Biol. 2010 Nov 7;55(21):6329-51. doi: 10.1088/0031-9155/55/21/001. Epub 2010 Oct 12.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验