Hartwell Brittany L, Pickens Chad J, Leon Martin, Berkland Cory
Bioengineering Graduate Program, University of Kansas 1520 West 15th Street, Lawrence, Kansas 66045, United States.
Department of Pharmaceutical Chemistry, University of Kansas 2095 Constant Avenue, Lawrence, Kansas 66047, United States.
Biomacromolecules. 2017 Jun 12;18(6):1893-1907. doi: 10.1021/acs.biomac.7b00335. Epub 2017 May 17.
A pressing need exists for antigen-specific immunotherapies (ASIT) that induce selective tolerance in autoimmune disease while avoiding deleterious global immunosuppression. Multivalent soluble antigen arrays (SAgA), consisting of a hyaluronic acid (HA) linear polymer backbone cografted with multiple copies of autoantigen (PLP) and cell adhesion inhibitor (LABL) peptides, are designed to induce tolerance to a specific multiple sclerosis (MS) autoantigen. Previous studies established that hydrolyzable SAgA, employing a degradable linker to codeliver PLP and LABL, was therapeutic in experimental autoimmune encephalomyelitis (EAE) in vivo and exhibited antigen-specific binding with B cells, targeted the B cell receptor (BCR), and dampened BCR-mediated signaling in vitro. Our results pointed to sustained BCR engagement as the SAgA therapeutic mechanism, so we developed a new version of the SAgA molecule using nonhydrolyzable conjugation chemistry, hypothesizing it would enhance and maintain the molecule's action at the cell surface to improve efficacy. "Click SAgA" (cSAgA) uses hydrolytically stable covalent conjugation chemistry (Copper-catalyzed Azide-Alkyne Cycloaddition (CuAAC)) rather than a hydrolyzable oxime bond to attach PLP and LABL to HA. We explored cSAgA B cell engagement and modulation of BCR-mediated signaling in vitro through flow cytometry binding and calcium flux signaling assays. Indeed, cSAgA exhibited higher avidity B cell binding and greater dampening of BCR-mediated signaling than hydrolyzable SAgA. Furthermore, cSAgA exhibited significantly enhanced in vivo efficacy compared to hydrolyzable SAgA, achieving equivalent efficacy at one-quarter of the dose. These results indicate that nonhydrolyzable conjugation increased the avidity of cSAgA to drive in vivo efficacy through modulated BCR-mediated signaling.
迫切需要能够在自身免疫性疾病中诱导选择性耐受同时避免有害的全身性免疫抑制的抗原特异性免疫疗法(ASIT)。多价可溶性抗原阵列(SAgA)由透明质酸(HA)线性聚合物主链组成,该主链上共嫁接有多个自身抗原(PLP)和细胞粘附抑制剂(LABL)肽的拷贝,旨在诱导对特定多发性硬化症(MS)自身抗原的耐受。先前的研究表明,采用可降解连接子共递送PLP和LABL的可水解SAgA在实验性自身免疫性脑脊髓炎(EAE)体内具有治疗作用,并且与B细胞表现出抗原特异性结合,靶向B细胞受体(BCR),并在体外抑制BCR介导的信号传导。我们的结果表明持续的BCR参与是SAgA的治疗机制,因此我们使用不可水解的共轭化学方法开发了新版本的SAgA分子,推测它将增强并维持该分子在细胞表面的作用以提高疗效。“点击SAgA”(cSAgA)使用水解稳定的共价共轭化学(铜催化的叠氮化物-炔烃环加成反应(CuAAC))而不是可水解的肟键将PLP和LABL连接到HA上。我们通过流式细胞术结合和钙流信号测定法在体外探索了cSAgA与B细胞的结合以及对BCR介导信号传导的调节。事实上,与可水解SAgA相比,cSAgA表现出更高亲和力的B细胞结合以及对BCR介导信号传导的更大抑制作用。此外,与可水解SAgA相比,cSAgA在体内的疗效显著增强,在四分之一的剂量下即可达到同等疗效。这些结果表明,不可水解的共轭作用增加了cSAgA的亲和力,通过调节BCR介导的信号传导来推动体内疗效。