Suppr超能文献

对称排斥过程中示踪粒子的大偏差

Large Deviations of a Tracer in the Symmetric Exclusion Process.

作者信息

Imamura Takashi, Mallick Kirone, Sasamoto Tomohiro

机构信息

Department of Mathematics and Informatics, Chiba University, 1-33 Yayoi-cho, Inage, Chiba 263-8522, Japan.

Institut de Physique Théorique, CEA Saclay and URA 2306, CNRS, 91191 Gif-sur-Yvette cedex, France.

出版信息

Phys Rev Lett. 2017 Apr 21;118(16):160601. doi: 10.1103/PhysRevLett.118.160601. Epub 2017 Apr 17.

Abstract

The one-dimensional symmetric exclusion process, the simplest interacting particle process, is a lattice gas made of particles that hop symmetrically on a discrete line respecting hard-core exclusion. The system is prepared on the infinite lattice with a step initial profile with average densities ρ_{+} and ρ_{-} on the right and on the left of the origin. When ρ_{+}=ρ_{-}, the gas is at equilibrium and undergoes stationary fluctuations. When these densities are unequal, the gas is out of equilibrium and will remain so forever. A tracer, or a tagged particle, is initially located at the boundary between the two domains; its position X_{t} is a random observable in time that carries information on the nonequilibrium dynamics of the whole system. We derive an exact formula for the cumulant generating function and the large deviation function of X_{t} in the long-time limit and deduce the full statistical properties of the tracer's position. The equilibrium fluctuations of the tracer's position, when the density is uniform, are obtained as an important special case.

摘要

一维对称排斥过程是最简单的相互作用粒子过程,它是一种晶格气体,由在离散直线上对称跳跃且遵循硬核排斥的粒子组成。该系统在无限晶格上制备,初始分布为阶梯状,原点右侧和左侧的平均密度分别为ρ₊和ρ₋。当ρ₊ = ρ₋时,气体处于平衡状态并经历平稳涨落。当这些密度不相等时,气体处于非平衡状态且将永远保持如此。一个示踪粒子,或一个标记粒子,最初位于两个区域之间的边界处;其位置Xₜ是一个随时间变化的随机可观测量,它携带了关于整个系统非平衡动力学的信息。我们推导出了长时间极限下Xₜ的累积量生成函数和大偏差函数的精确公式,并推导出示踪粒子位置的完整统计性质。当密度均匀时,示踪粒子位置的平衡涨落作为一个重要的特殊情况被得到。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验