Santos J E, Schütz G M
Physik Department, TU München, James-Franck-Strasse, 85747 Garching, Germany.
Phys Rev E Stat Nonlin Soft Matter Phys. 2001 Sep;64(3 Pt 2):036107. doi: 10.1103/PhysRevE.64.036107. Epub 2001 Aug 20.
As a simple model for single-file diffusion of hard core particles we investigate the one-dimensional symmetric exclusion process. We consider an open semi-infinite system where one end is coupled to an external reservoir of constant density rho(*) and which initially is in a nonequilibrium state with bulk density rho(0). We calculate the exact time-dependent two-point density correlation function C(k,l)(t) identical with<n(k)(t)n(l)(t)>-<n(k)(t)><n(l)(t)> and the mean and variance of the integrated average net flux of particles N(t)-N(0) that have entered (or left) the system up to time t. We find that the boundary region of the semi-infinite relaxing system is in a state similar to the bulk state of a finite stationary system driven by a boundary gradient. The symmetric exclusion model provides a rare example where such behavior can be proved rigorously on the level of equal-time two-point correlation functions. Some implications for the relaxational dynamics of entangled polymers and for single-file diffusion in colloidal systems are discussed.
作为硬核粒子单文件扩散的一个简单模型,我们研究一维对称排斥过程。我们考虑一个开放的半无限系统,其一端与密度为ρ*的外部储库耦合,并且最初处于体密度为ρ(0)的非平衡态。我们计算精确的随时间变化的两点密度关联函数C(k,l)(t),它等同于<n(k)(t)n(l)(t)>-<n(k)(t)><n(l)(t)>,以及到时间t进入(或离开)系统的粒子的积分平均净通量N(t)-N(0)的均值和方差。我们发现半无限弛豫系统的边界区域处于一种类似于由边界梯度驱动的有限稳态系统的体状态的状态。对称排斥模型提供了一个罕见的例子,在等时两点关联函数的层面上可以严格证明这种行为。讨论了对纠缠聚合物弛豫动力学和胶体系统中单文件扩散的一些影响。