RIKEN-MIT Center for Neural Circuit Genetics at the Picower Institute for Learning and Memory, Department of Biology and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA.
Center for Brain Science, Department of Molecular and Cellular Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA.
Pharmacol Biochem Behav. 2018 Nov;174:9-22. doi: 10.1016/j.pbb.2017.05.001. Epub 2017 May 2.
Dopamine and serotonin play critical roles in flexible behaviors and are related to various psychiatric and motor disorders. This paper reviews the global organization of dopamine and serotonin systems through recent findings using a modified rabies virus. We first introduce methods for comprehensive mapping of monosynaptic inputs. We then describe quantitative comparisons across the data regarding monosynaptic inputs to dopamine neurons versus serotonin neurons. There is surprising similarity between the input to dopamine neurons in the ventral tegmental area (VTA) and the input to serotonin neurons in the dorsal raphe (DR), suggesting functional interactions between these systems. We next introduce studies of mapping monosynaptic inputs to subpopulations of dopamine neurons specified by their projection targets. It was found that the population of dopamine neurons that project to the tail of the striatum (TS) forms an anatomically distinct outlier, suggesting a unique function. From these series of anatomical studies, we propose that there are three information flows that regulate these neuromodulatory systems: the midline stream to serotonin neurons in median raphe (MR) and B6, the central stream to value-coding dopamine neurons and serotonin neurons in rostral DR, and the lateral stream to TS-projecting dopamine neurons. Finally we introduce a new approach to investigate firing patterns of monosynaptic inputs to dopamine neurons in behaving animals. Combining anatomical and physiological findings, we propose that within the central stream, dopamine neurons broadcast a central teaching signal rather than personal teaching signals to multiple brain areas, which are computed in a redundant way in multi-layered neural circuits. Examination of global organization of the dopamine and serotonin circuits not only revealed the complexity of the systems but also revealed some principles of their organization. We will also discuss limitations, practical issues and the possibility of future improvements of the rabies virus-mediated tracing system.
多巴胺和血清素在灵活行为中发挥着关键作用,与各种精神和运动障碍有关。本文通过最近使用改良狂犬病毒的发现,综述了多巴胺和血清素系统的全球组织。我们首先介绍了综合映射单突触输入的方法。然后,我们描述了有关多巴胺神经元与血清素神经元单突触输入的定量比较。腹侧被盖区(VTA)中多巴胺神经元的输入与中缝背核(DR)中血清素神经元的输入惊人地相似,这表明这些系统之间存在功能相互作用。接下来,我们介绍了对多巴胺神经元亚群进行单突触输入映射的研究,这些亚群是根据其投射靶标来指定的。发现投射到纹状体尾部(TS)的多巴胺神经元群体形成了一个明显的解剖学异常,这表明了其独特的功能。从这些系列的解剖学研究中,我们提出了三种调节这些神经调质系统的信息流:中线流到中缝背核(MR)和 B6 的血清素神经元,中轴流到头侧 DR 的价值编码多巴胺神经元和血清素神经元,以及侧线流到 TS 投射多巴胺神经元。最后,我们介绍了一种新的方法来研究行为动物中单突触输入到多巴胺神经元的放电模式。结合解剖学和生理学发现,我们提出在中央流中,多巴胺神经元向多个脑区广播中央教学信号,而不是向多个脑区广播个人教学信号,这些信号在多层神经回路中以冗余的方式进行计算。对多巴胺和血清素回路的全球组织的研究不仅揭示了系统的复杂性,还揭示了其组织的一些原则。我们还将讨论狂犬病毒介导的追踪系统的局限性、实际问题和未来改进的可能性。