Suppr超能文献

通过液相剥离制备 MoS 和其他过渡金属二卤化物的胶体二维纳米片。

Colloidal 2D nanosheets of MoS and other transition metal dichalcogenides through liquid-phase exfoliation.

机构信息

Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, 3, Acad. Lavrentiev Ave., Novosibirsk 630090, Russian Federation.

Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, 3, Acad. Lavrentiev Ave., Novosibirsk 630090, Russian Federation.

出版信息

Adv Colloid Interface Sci. 2017 Jul;245:40-61. doi: 10.1016/j.cis.2017.04.014. Epub 2017 Apr 25.

Abstract

This review focuses on the exfoliation of transition metal dichalcogenides MQ (TMD, M=Mo, W, etc., Q=S, Se, Te) in liquid media, leading to the formation of 2D nanosheets dispersed in colloids. Nowadays, colloidal dispersions of MoS, MoSe, WS and other related materials are considered for a wide range of applications, including electronic and optoelectronic devices, energy storage and conversion, sensors for gases, catalysts and catalyst supports, biomedicine, etc. We address various methods developed so far for transferring these materials from bulk to nanoscale thickness, and discuss their stabilization and factors influencing it. Long-time known exfoliation through Li intercalation has received renewed attention in recent years, and is recognized as a method yielding highest dispersed concentrations of single-layer MoS and related materials. Latest trends in the intercalation/exfoliation approach include electrochemical lithium intercalation, experimenting with various intercalating agents, multi-step intercalation, etc. On the other hand, direct sonication in solvents is a much simpler technique that allows one to avoid dangerous reagents, long reaction times and purifying steps. The influence of the solvent characteristics on the colloid formation was closely investigated in numerous recent studies. Moreover, it is being recognized that, besides solvent properties, sonication parameters and solvent transformations may affect the process in a crucial way. The latest data on the interaction of MoS with solvents evidence that not only solution thermodynamics should be employed to understand the formation and stabilization of such colloids, but also general and organic chemistry. It appears that due to the sonolysis of the solvents and cutting of the MoS layers in various directions, the reactive edges of the colloidal nanosheets may bear various functionalities, which participate in their stabilization in the colloidal state. In most cases, direct exfoliation of MQ into colloidal nanosheets is conducted in organic solvents, while a small amount of works report low-concentrated colloids in pure water. To improve the dispersion abilities of transition metal dichalcogenides in water, various stabilizers are often introduced into the reaction media, and their interactions with nanosheets play an important role in the stabilization of the dispersions. Surfactants, polymers and biomolecules usually interact with transition metal dichalcogenide nanosheets through non-covalent mechanisms, similarly to the cases of graphene and carbon nanotubes. Finally, we survey covalent chemical modification of colloidal MQ nanosheets, a special and different approach, consisting in the functionalization of MQ surfaces with help of thiol chemistry, interaction with electrophiles, or formation of inorganic coordination complexes. The intentional design of surface chemistry of the nanosheets is a very promising way to control their solubility, compatibility with other moieties and incorporation into hybrid structures. Although the scope of the present review is limited to transition metal dichalcogenides, the dispersion in colloids of other chalcogenides (such as NbS, VS, MoS, etc.) in many ways follows similar trends. We conclude the review by discussing current challenges in the area of exfoliation of MoS and its related materials.

摘要

这篇综述聚焦于过渡金属二卤族化合物 MQ(TMD,M=Mo、W 等,Q=S、Se、Te)在液相中的剥离,从而形成分散在胶体中的二维纳米片。如今,MoS、MoSe、WS 和其他相关材料的胶体分散体被认为具有广泛的应用,包括电子和光电子器件、能量存储和转换、气体传感器、催化剂和催化剂载体、生物医学等。我们讨论了迄今为止为将这些材料从体相转移到纳米相厚度而开发的各种方法,并讨论了它们的稳定性及其影响因素。长期以来已知的通过插层锂进行的剥离在近年来受到了新的关注,并且被认为是一种可以得到最高分散浓度的单层 MoS 和相关材料的方法。插层/剥离方法的最新趋势包括电化学锂插层、尝试各种插层剂、多步插层等。另一方面,直接在溶剂中超声是一种更简单的技术,它可以避免使用危险试剂、长时间反应和纯化步骤。在最近的许多研究中,人们密切研究了溶剂特性对胶体形成的影响。此外,人们认识到,除了溶剂性质外,超声参数和溶剂转化也可能以关键方式影响该过程。关于 MoS 与溶剂相互作用的最新数据表明,不仅应该使用溶液热力学来理解此类胶体的形成和稳定,还应该使用普通和有机化学。似乎由于溶剂的超声分解和 MoS 层在各个方向上的切割,胶体纳米片的反应边缘可能具有各种官能团,这些官能团参与其在胶体状态下的稳定。在大多数情况下,MQ 直接在有机溶剂中剥离成胶体纳米片,而少量工作报道了在纯水中的低浓度胶体。为了提高过渡金属二卤族化合物在水中的分散能力,通常将各种稳定剂引入反应介质中,它们与纳米片的相互作用在分散体的稳定中起着重要作用。表面活性剂、聚合物和生物分子通常通过非共价机制与过渡金属二卤族化合物纳米片相互作用,类似于石墨烯和碳纳米管的情况。最后,我们调查了胶体 MQ 纳米片的共价化学修饰,这是一种特殊而不同的方法,包括通过硫醇化学对 MQ 表面进行功能化、与亲电试剂相互作用或形成无机配位配合物。纳米片表面化学的有意设计是控制其溶解度、与其他部分的相容性和并入混合结构的非常有前途的方法。尽管本综述的范围仅限于过渡金属二卤族化合物,但其他卤族化合物(如 NbS、VS、MoS 等)在胶体中的分散在许多方面遵循类似的趋势。我们通过讨论 MoS 及其相关材料剥离的当前挑战来结束综述。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验