文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于声催化的钛基治疗性纳米医学优化。

Sonocatalytic Optimization of Titanium-Based Therapeutic Nanomedicine.

机构信息

Department of Ultrasound, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, P. R. China.

Laboratory Center, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, P. R. China.

出版信息

Adv Sci (Weinh). 2023 Sep;10(25):e2301764. doi: 10.1002/advs.202301764. Epub 2023 Jul 3.


DOI:10.1002/advs.202301764
PMID:37395421
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10477905/
Abstract

Recent considerable technological advances in ultrasound-based treatment modality provides a magnificent prospect for scientific communities to conquer the related diseases, which is featured with remarkable tissue penetration, non-invasive and non-thermal characteristics. As one of the critical elements that influences treatment outcomes, titanium (Ti)-based sonosensitizers with distinct physicochemical properties and exceptional sonodynamic efficiency have been applied extensively in the field of nanomedical applications. To date, a myriad of methodologies has been designed to manipulate the sonodynamic performance of titanium-involved nanomedicine and further enhance the productivity of reactive oxygen species for disease treatments. In this comprehensive review, the sonocatalytic optimization of diversified Ti-based nanoplatforms, including defect engineering, plasmon resonance modulation, heterojunction, modulating tumor microenvironment, as well as the development of synergistic therapeutic modalities is mainly focused. The state-of-the-art Ti-based nanoplatforms ranging from preparation process to the extensive medical applications are summarized and highlighted, with the goal of elaborating on future research prospects and providing a perspective on the bench-to-beside translation of these sonocatalytic optimization tactics. Furthermore, to spur further technological advancements in nanomedicine, the difficulties currently faced and the direction of sonocatalytic optimization of Ti-based therapeutic nanomedicine are proposed and outlooked.

摘要

近年来,基于超声的治疗模式在技术上取得了重大进展,为科学界征服相关疾病提供了广阔的前景,其具有显著的组织穿透性、非侵入性和非热特性。作为影响治疗效果的关键因素之一,具有独特物理化学性质和卓越声动力学效率的钛(Ti)基声敏剂已广泛应用于纳米医学领域。迄今为止,已经设计了多种方法来操纵涉及钛的纳米医学的声动力学性能,并进一步提高用于疾病治疗的活性氧的产量。在这篇全面的综述中,主要关注了多样化 Ti 基纳米平台的声催化优化,包括缺陷工程、等离子体共振调制、异质结、调节肿瘤微环境以及协同治疗模式的发展。总结和突出了最新的 Ti 基纳米平台,从制备工艺到广泛的医学应用,旨在阐述未来的研究前景,并为这些声催化优化策略的从实验室到临床的转化提供一个视角。此外,为了推动纳米医学的进一步技术发展,提出并展望了 Ti 基治疗性纳米医学的声催化优化所面临的困难和方向。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f8f/10477905/c4b750affbfd/ADVS-10-2301764-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f8f/10477905/3f0d63ebdbb5/ADVS-10-2301764-g018.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f8f/10477905/7f3748814587/ADVS-10-2301764-g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f8f/10477905/ab4e1f75dc52/ADVS-10-2301764-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f8f/10477905/a56fc9c2447e/ADVS-10-2301764-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f8f/10477905/d3eb0910051a/ADVS-10-2301764-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f8f/10477905/5e9bca7158e4/ADVS-10-2301764-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f8f/10477905/2c9463e7be3b/ADVS-10-2301764-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f8f/10477905/308444506968/ADVS-10-2301764-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f8f/10477905/a124976252ee/ADVS-10-2301764-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f8f/10477905/236223f02dd4/ADVS-10-2301764-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f8f/10477905/3b5f5911c303/ADVS-10-2301764-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f8f/10477905/b3ffe01bc7b5/ADVS-10-2301764-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f8f/10477905/6dc6f523f8f1/ADVS-10-2301764-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f8f/10477905/c4b750affbfd/ADVS-10-2301764-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f8f/10477905/3f0d63ebdbb5/ADVS-10-2301764-g018.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f8f/10477905/7f3748814587/ADVS-10-2301764-g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f8f/10477905/ab4e1f75dc52/ADVS-10-2301764-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f8f/10477905/a56fc9c2447e/ADVS-10-2301764-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f8f/10477905/d3eb0910051a/ADVS-10-2301764-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f8f/10477905/5e9bca7158e4/ADVS-10-2301764-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f8f/10477905/2c9463e7be3b/ADVS-10-2301764-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f8f/10477905/308444506968/ADVS-10-2301764-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f8f/10477905/a124976252ee/ADVS-10-2301764-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f8f/10477905/236223f02dd4/ADVS-10-2301764-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f8f/10477905/3b5f5911c303/ADVS-10-2301764-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f8f/10477905/b3ffe01bc7b5/ADVS-10-2301764-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f8f/10477905/6dc6f523f8f1/ADVS-10-2301764-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f8f/10477905/c4b750affbfd/ADVS-10-2301764-g006.jpg

相似文献

[1]
Sonocatalytic Optimization of Titanium-Based Therapeutic Nanomedicine.

Adv Sci (Weinh). 2023-9

[2]
Nanomedicine/materdicine-enabled sonocatalytic therapy.

Adv Drug Deliv Rev. 2024-2

[3]
Two-Dimensional Graphene Augments Nanosonosensitized Sonocatalytic Tumor Eradication.

ACS Nano. 2017-8-28

[4]
Titanium-Based Nanoarchitectures for Sonodynamic Therapy-Involved Multimodal Treatments.

Small. 2023-3

[5]
Inorganic Sonosensitizers for Sonodynamic Therapy in Cancer Treatment.

Small. 2023-10

[6]
Ultrasound activated nanosensitizers for sonodynamic therapy and theranostics.

Biomed Mater. 2021-2-24

[7]
A Comprehensive Review of Inorganic Sonosensitizers for Sonodynamic Therapy.

Int J Mol Sci. 2023-7-26

[8]
Inorganic chemoreactive nanosonosensitzers with unique physiochemical properties and structural features for versatile sonodynamic nanotherapies.

Biomed Mater. 2021-4-21

[9]
Recent Advances in Nanomaterial-Assisted Combinational Sonodynamic Cancer Therapy.

Adv Mater. 2020-11

[10]
The promising interplay between sonodynamic therapy and nanomedicine.

Adv Drug Deliv Rev. 2022-10

引用本文的文献

[1]
Conjugated oligo (phenylene vinylene) covalently linked porphyrin for sonodynamic therapy.

Smart Mol. 2024-11-13

[2]
A Dual-Targeting Biomimetic Nanoplatform Integrates SDT/CDT/Gas Therapy to Boost Synergistic Ferroptosis for Orthotopic Hepatocellular Carcinoma Therapy.

Adv Sci (Weinh). 2025-2

[3]
Heterojunction semiconductor nanocatalysts as cancer theranostics.

APL Bioeng. 2024-10-4

[4]
Nanocatalytic medicine enabled next-generation therapeutics for bacterial infections.

Mater Today Bio. 2024-9-16

[5]
Biomaterials for immunomodulation in wound healing.

Regen Biomater. 2024-3-27

[6]
Novel Spatially Asymmetric Copper Bismuthate-Mediated Augmentation of Energy Conversion to Realize "Three-Step" Tumor Suppression.

Adv Sci (Weinh). 2024-7

本文引用的文献

[1]
formation of defect-engineered N-doped TiO porous mesocrystals for enhanced photo-degradation and PEC performance.

Nanoscale Adv. 2018-12-26

[2]
Cancer cell membrane-coated C-TiO hollow nanoshells for combined sonodynamic and hypoxia-activated chemotherapy.

Acta Biomater. 2022-10-15

[3]
Collagenase-Loaded H-TiO Nanoparticles Enhance Ultrasound Imaging-Guided Sonodynamic Therapy in a Pancreatic Carcinoma Xenograft Model via Digesting Stromal Barriers.

ACS Appl Mater Interfaces. 2022-9-14

[4]
Titanium Sulfide Nanosheets Serve as Cascade Bioreactors for H S-Mediated Programmed Gas-Sonodynamic Cancer Therapy.

Adv Sci (Weinh). 2022-10

[5]
The promising interplay between sonodynamic therapy and nanomedicine.

Adv Drug Deliv Rev. 2022-10

[6]
Recent Progress Toward Imaging Application of Multifunction Sonosensitizers in Sonodynamic Therapy.

Int J Nanomedicine. 2022

[7]
Defect Engineering Triggers Exceptional Sonodynamic Activity of Manganese Oxide Nanoparticles for Cancer Therapy.

ACS Appl Bio Mater. 2022-8-11

[8]
Oxygen-deficient titanium dioxide-loaded black phosphorus nanosheets for synergistic photothermal and sonodynamic cancer therapy.

Biomater Adv. 2022-5

[9]
Macrophage-Targeted Sonodynamic/Photothermal Synergistic Therapy for Preventing Atherosclerotic Plaque Progression Using CuS/TiO Heterostructured Nanosheets.

ACS Nano. 2022-7-26

[10]
Piezotronic Effect-Augmented CuO-BaTiO Sonosensitizers for Multifunctional Cancer Dynamic Therapy.

ACS Nano. 2022-6-28

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索