Suppr超能文献

一种用于高效靶向人类基因的无慢病毒诱导型CRISPR-Cas9系统。

A lentivirus-free inducible CRISPR-Cas9 system for efficient targeting of human genes.

作者信息

Bisht Kamlesh, Grill Sherilyn, Graniel Jacqueline, Nandakumar Jayakrishnan

机构信息

Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA.

Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA.

出版信息

Anal Biochem. 2017 Aug 1;530:40-49. doi: 10.1016/j.ab.2017.05.001. Epub 2017 May 4.

Abstract

CRISPR-Cas9 is a cutting-edge tool for modifying genomes. The efficacy with which Cas9 recognizes its target has revolutionized the engineering of knockouts. However this efficacy complicates the knocking out of important genes in cultured cells. Unedited cells holding a survival advantage within an edited population can confound the knockout phenotype. Here we develop a HeLa-based system that overcomes this limitation, incorporating several attractive features. First, we use Flp-recombinase to generate clones stably integrated for Cas9 and guide RNAs, eliminating the possibility of unedited cells. Second, Cas9 can be induced uniformly in the clonal cultures using doxycycline to measure the knockout phenotype. Third, two genes can be simultaneously knocked out using this approach. Finally, by not involving lentiviruses, our method is appealing to a broad research audience. Using this methodology we generated an inducible AGO2-knockout cell line showing normal RNA interference in the absence of doxycycline. Upon induction of Cas9, the AGO2 locus was cleaved, the AGO2 protein was depleted, and RNA interference was compromised. In addition to generating inducible knockouts, our technology can be adapted to improve other applications of Cas9, including transcriptional/epigenetic modulation and visualization of cellular DNA loci.

摘要

CRISPR-Cas9是一种用于修饰基因组的前沿工具。Cas9识别其靶标的效率彻底改变了基因敲除工程。然而,这种效率使得在培养细胞中敲除重要基因变得复杂。在编辑群体中具有生存优势的未编辑细胞会混淆基因敲除表型。在这里,我们开发了一种基于HeLa细胞的系统,该系统克服了这一局限性,并具有几个吸引人的特点。首先,我们使用Flp重组酶来生成稳定整合了Cas9和引导RNA的克隆,消除了未编辑细胞的可能性。其次,在克隆培养物中可以使用强力霉素均匀诱导Cas9,以测量基因敲除表型。第三,使用这种方法可以同时敲除两个基因。最后,由于不涉及慢病毒,我们的方法对广大研究群体具有吸引力。使用这种方法,我们生成了一种可诱导的AGO2基因敲除细胞系,该细胞系在没有强力霉素的情况下表现出正常的RNA干扰。在诱导Cas9后,AGO2基因座被切割,AGO2蛋白被耗尽,RNA干扰受到影响。除了生成可诱导的基因敲除细胞系外,我们的技术还可以进行改进,以改善Cas9的其他应用,包括转录/表观遗传调控和细胞DNA位点的可视化。

相似文献

1
A lentivirus-free inducible CRISPR-Cas9 system for efficient targeting of human genes.
Anal Biochem. 2017 Aug 1;530:40-49. doi: 10.1016/j.ab.2017.05.001. Epub 2017 May 4.
2
Conditional Gene Knockout in Human Cells with Inducible CRISPR/Cas9.
Methods Mol Biol. 2019;1961:185-209. doi: 10.1007/978-1-4939-9170-9_12.
3
Doxycycline-Dependent Self-Inactivation of CRISPR-Cas9 to Temporally Regulate On- and Off-Target Editing.
Mol Ther. 2020 Jan 8;28(1):29-41. doi: 10.1016/j.ymthe.2019.09.006. Epub 2019 Sep 12.
4
Construction of an Inducible CRISPR/Cas9 System for CXCR4 Gene and Demonstration of its Effects on MKN-45 Cells.
Cell Biochem Biophys. 2020 Mar;78(1):23-30. doi: 10.1007/s12013-019-00898-x. Epub 2019 Dec 24.
5
CRISPR/Cas9: A tool for immunological research.
Eur J Immunol. 2018 Apr;48(4):576-583. doi: 10.1002/eji.201747131. Epub 2018 Feb 26.
6
CRISPR/Cas9-based gene targeting using synthetic guide RNAs enables robust cell biological analyses.
Mol Biol Cell. 2018 Oct 1;29(20):2370-2377. doi: 10.1091/mbc.E18-04-0214. Epub 2018 Aug 9.
7
Generation of Genetic Knockouts in Myeloid Cell Lines Using a Lentiviral CRISPR/Cas9 System.
Methods Mol Biol. 2018;1714:41-55. doi: 10.1007/978-1-4939-7519-8_3.
9
Practical Considerations for Using Pooled Lentiviral CRISPR Libraries.
Curr Protoc Mol Biol. 2016 Jul 1;115:31.5.1-31.5.13. doi: 10.1002/cpmb.8.
10
Transcriptional Regulation with CRISPR/Cas9 Effectors in Mammalian Cells.
Methods Mol Biol. 2016;1358:43-57. doi: 10.1007/978-1-4939-3067-8_3.

引用本文的文献

1
CRISPR-Switch regulates sgRNA activity by Cre recombination for sequential editing of two loci.
Nat Commun. 2019 Nov 29;10(1):5454. doi: 10.1038/s41467-019-13403-y.
2
How to Choose the Right Inducible Gene Expression System for Mammalian Studies?
Cells. 2019 Jul 30;8(8):796. doi: 10.3390/cells8080796.
3
Comparative analysis of lipid-mediated CRISPR-Cas9 genome editing techniques.
Cell Biol Int. 2018 Jul;42(7):849-858. doi: 10.1002/cbin.10952. Epub 2018 Mar 14.

本文引用的文献

1
Current status of potential applications of repurposed Cas9 for structural and functional genomics of plants.
Biochem Biophys Res Commun. 2016 Nov 25;480(4):499-507. doi: 10.1016/j.bbrc.2016.10.130. Epub 2016 Oct 29.
2
In vivo genome editing via CRISPR/Cas9 mediated homology-independent targeted integration.
Nature. 2016 Dec 1;540(7631):144-149. doi: 10.1038/nature20565. Epub 2016 Nov 16.
3
Structural and functional consequences of a disease mutation in the telomere protein TPP1.
Proc Natl Acad Sci U S A. 2016 Nov 15;113(46):13021-13026. doi: 10.1073/pnas.1605685113. Epub 2016 Nov 2.
4
An easy and efficient inducible CRISPR/Cas9 platform with improved specificity for multiple gene targeting.
Nucleic Acids Res. 2016 Nov 2;44(19):e149. doi: 10.1093/nar/gkw660. Epub 2016 Jul 25.
5
Biology and Applications of CRISPR Systems: Harnessing Nature's Toolbox for Genome Engineering.
Cell. 2016 Jan 14;164(1-2):29-44. doi: 10.1016/j.cell.2015.12.035.
6
Crystal Structure of Staphylococcus aureus Cas9.
Cell. 2015 Aug 27;162(5):1113-26. doi: 10.1016/j.cell.2015.08.007.
7
CRISPR-Cas: New Tools for Genetic Manipulations from Bacterial Immunity Systems.
Annu Rev Microbiol. 2015;69:209-28. doi: 10.1146/annurev-micro-091014-104441. Epub 2015 Jul 22.
8
Inducible in vivo genome editing with CRISPR-Cas9.
Nat Biotechnol. 2015 Apr;33(4):390-394. doi: 10.1038/nbt.3155. Epub 2015 Feb 18.
9
Therapeutic genome editing: prospects and challenges.
Nat Med. 2015 Feb;21(2):121-31. doi: 10.1038/nm.3793.
10
In vivo engineering of oncogenic chromosomal rearrangements with the CRISPR/Cas9 system.
Nature. 2014 Dec 18;516(7531):423-7. doi: 10.1038/nature13902. Epub 2014 Oct 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验