Arafet Kemel, Ferrer Silvia, González Florenci V, Moliner Vicent
Departament de Química Física i Analítica, Universitat Jaume I, 12071 Castelló, Spain.
Phys Chem Chem Phys. 2017 May 24;19(20):12740-12748. doi: 10.1039/c7cp01726j.
Cysteine proteases are the most abundant proteases in parasitic protozoa and they are essential enzymes to the life cycle of several of them, thus becoming attractive therapeutic targets for the development of new inhibitors. In this paper, a computational study of the inhibition mechanism of cysteine protease by dipeptidyl-2,3-epoxyketone Cbz-Phe-Hph-(S), a recently proposed inhibitor, has been carried out by means of molecular dynamics (MD) simulations with hybrid QM/MM potentials. The computed free energy surfaces of the inhibition mechanism of cysteine proteases by peptidyl epoxyketones showing how the activation of the epoxide ring and the attack of Cys25 on either C2 or C3 atoms take place in a concerted manner. According to our results, the acid species responsible for the protonation of the oxygen atom of the ring would be able to conserve His159, in contrast to previous studies that proposed a water molecule as the activating species. The low activation free energies for the reaction where Cys25 attacks the C2 atom of the epoxide ring (12.1 kcal mol) or to the C3 atom (15.4 kcal mol), together with the high negative reaction energies suggest that the derivatives of peptidyl-2,3-epoxyketones can be used to develop new potent inhibitors for the treatment of Chagas disease.
半胱氨酸蛋白酶是寄生原生动物中最丰富的蛋白酶,是其中几种生物生命周期所必需的酶,因此成为开发新型抑制剂的有吸引力的治疗靶点。本文通过具有混合QM/MM势的分子动力学(MD)模拟,对最近提出的抑制剂二肽基-2,3-环氧酮Cbz-Phe-Hph-(S)抑制半胱氨酸蛋白酶的机制进行了计算研究。计算得到的肽基环氧酮抑制半胱氨酸蛋白酶机制的自由能表面表明,环氧环的活化以及半胱氨酸25对C2或C3原子的攻击是协同发生的。根据我们的结果,与先前提出水分子作为活化物种的研究相反,负责环中氧原子质子化的酸性物种能够保留组氨酸159。半胱氨酸25攻击环氧环C2原子(12.1 kcal/mol)或C3原子(15.4 kcal/mol)的反应具有较低的活化自由能,再加上较高的负反应能,表明肽基-2,3-环氧酮衍生物可用于开发治疗恰加斯病的新型高效抑制剂。