Department of Chemistry, University of California , Berkeley, California 94720, United States.
California Research Alliance (CARA), BASF Corporation , Berkeley, California 94720, United States.
J Am Chem Soc. 2017 May 31;139(21):7348-7354. doi: 10.1021/jacs.7b02884. Epub 2017 May 18.
Copper nanowire networks are considered a promising alternative to indium tin oxide as transparent conductors. The fast degradation of copper in ambient conditions, however, largely overshadows their practical applications. Here, we develop the synthesis of ultrathin Cu@Au core-shell nanowires using trioctylphosphine as a strong binding ligand to prevent galvanic replacement reactions. The epitaxial overgrowth of a gold shell with a few atomic layers on the surface of copper nanowires can greatly enhance their resistance to heat (80 °C), humidity (80%) and air for at least 700 h, while their optical and electrical performance remained similar to the original high-performance copper (e.g., sheet resistance 35 Ω sq at transmittance of ∼89% with a haze factor <3%). The precise engineering of core-shell nanostructures demonstrated in this study offers huge potential to further explore the applications of copper nanowires in flexible and stretchable electronic and optoelectronic devices.
铜纳米线网络被认为是一种有前途的透明导体替代物,可以替代氧化铟锡。然而,铜在环境条件下的快速降解在很大程度上使它们的实际应用黯然失色。在这里,我们使用三辛基膦作为强结合配体来开发超薄 Cu@Au 核壳纳米线的合成,以防止电置换反应。在铜纳米线表面上外延生长少数原子层的金壳可以极大地提高它们对热(80°C)、湿度(80%)和空气的抵抗力,至少 700 小时,而它们的光学和电学性能仍然与原始高性能铜相似(例如,透光率约为 89%,雾度因子<3%时的方阻为 35 Ω/sq)。本研究中展示的核壳纳米结构的精确工程为进一步探索铜纳米线在柔性和可拉伸电子和光电设备中的应用提供了巨大的潜力。