Suppr超能文献

钴胺素核糖开关在区分甲基钴胺素和腺苷钴胺素方面表现出广泛的能力。

Cobalamin riboswitches exhibit a broad range of ability to discriminate between methylcobalamin and adenosylcobalamin.

作者信息

Polaski Jacob T, Webster Samantha M, Johnson James E, Batey Robert T

机构信息

Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309.

Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309.

出版信息

J Biol Chem. 2017 Jul 14;292(28):11650-11658. doi: 10.1074/jbc.M117.787176. Epub 2017 May 8.

Abstract

Riboswitches are a widely distributed class of regulatory RNAs in bacteria that modulate gene expression via small-molecule-induced conformational changes. Generally, these RNA elements are grouped into classes based upon conserved primary and secondary structure and their cognate effector molecule. Although this approach has been very successful in identifying new riboswitch families and defining their distributions, small sequence differences between structurally related RNAs can alter their ligand selectivity and regulatory behavior. Herein, we use a structure-based mutagenic approach to demonstrate that cobalamin riboswitches have a broad spectrum of preference for the two biological forms of cobalamin using isothermal titration calorimetry. This selectivity is primarily mediated by the interaction between a peripheral element of the RNA that forms a T-loop module and a subset of nucleotides in the cobalamin-binding pocket. Cell-based fluorescence reporter assays in revealed that mutations that switch effector preference lead to differential regulatory responses in a biological context. These data demonstrate that a more comprehensive analysis of representative sequences of both previously and newly discovered classes of riboswitches might reveal subgroups of RNAs that respond to different effectors. Furthermore, this study demonstrates a second distinct means by which tertiary structural interactions in cobalamin riboswitches dictate ligand selectivity.

摘要

核糖开关是细菌中广泛分布的一类调控RNA,它们通过小分子诱导的构象变化来调节基因表达。一般来说,这些RNA元件根据保守的一级和二级结构及其同源效应分子被分为不同类别。尽管这种方法在识别新的核糖开关家族并确定其分布方面非常成功,但结构相关RNA之间的小序列差异会改变它们的配体选择性和调控行为。在此,我们使用基于结构的诱变方法,通过等温滴定量热法证明钴胺素核糖开关对钴胺素的两种生物学形式具有广泛的偏好性。这种选择性主要由形成T环模块的RNA外围元件与钴胺素结合口袋中的一部分核苷酸之间的相互作用介导。在细胞中进行的荧光报告基因分析表明,改变效应物偏好的突变在生物学背景下会导致不同的调控反应。这些数据表明,对先前和新发现的核糖开关类别的代表性序列进行更全面的分析,可能会揭示出对不同效应物作出反应的RNA亚群。此外,这项研究还证明了钴胺素核糖开关中的三级结构相互作用决定配体选择性的第二种独特方式。

相似文献

1
Cobalamin riboswitches exhibit a broad range of ability to discriminate between methylcobalamin and adenosylcobalamin.
J Biol Chem. 2017 Jul 14;292(28):11650-11658. doi: 10.1074/jbc.M117.787176. Epub 2017 May 8.
3
A kissing loop is important for btuB riboswitch ligand sensing and regulatory control.
J Biol Chem. 2015 Oct 30;290(44):26739-51. doi: 10.1074/jbc.M115.684134. Epub 2015 Sep 14.
4
Regulation of Gene Expression Through Effector-dependent Conformational Switching by Cobalamin Riboswitches.
J Mol Biol. 2022 Sep 30;434(18):167585. doi: 10.1016/j.jmb.2022.167585. Epub 2022 Apr 12.
7
The dynamic nature of RNA as key to understanding riboswitch mechanisms.
Acc Chem Res. 2011 Dec 20;44(12):1339-48. doi: 10.1021/ar200035g. Epub 2011 Jun 16.
8
Context-dependence of T-loop Mediated Long-range RNA Tertiary Interactions.
J Mol Biol. 2023 May 15;435(10):168070. doi: 10.1016/j.jmb.2023.168070. Epub 2023 Mar 31.
9
Targeting Riboswitches with Beta-Axial-Substituted Cobalamins.
ACS Chem Biol. 2023 May 19;18(5):1136-1147. doi: 10.1021/acschembio.2c00939. Epub 2023 Apr 24.
10
B12 cofactors directly stabilize an mRNA regulatory switch.
Nature. 2012 Dec 6;492(7427):133-7. doi: 10.1038/nature11607. Epub 2012 Oct 14.

引用本文的文献

1
Designing small molecules targeting a cryptic RNA binding site through base displacement.
Nat Chem Biol. 2025 Aug 29. doi: 10.1038/s41589-025-02018-8.
3
Expanding the Riboglow-FLIM Toolbox with Different Fluorescence Lifetime-Producing RNA Tags.
Biochemistry. 2025 Jun 3;64(11):2429-2438. doi: 10.1021/acs.biochem.4c00567. Epub 2025 May 15.
4
Designing small molecules that target a cryptic RNA binding site via base displacement.
Res Sq. 2025 Jan 29:rs.3.rs-5836924. doi: 10.21203/rs.3.rs-5836924/v1.
6
Skin-associated shares cobamides.
mSphere. 2025 Jan 28;10(1):e0060624. doi: 10.1128/msphere.00606-24. Epub 2024 Dec 18.
7
The current riboswitch landscape in .
Microbiology (Reading). 2024 Oct;170(10). doi: 10.1099/mic.0.001508.
8
Fluorescent riboswitch-controlled biosensors for the genome scale analysis of metabolic pathways.
Sci Rep. 2024 May 31;14(1):12555. doi: 10.1038/s41598-024-61980-w.
9
Skin-associated shares cobamides.
bioRxiv. 2024 Apr 28:2024.04.28.591522. doi: 10.1101/2024.04.28.591522.
10

本文引用的文献

1
Bioinformatic analysis of riboswitch structures uncovers variant classes with altered ligand specificity.
Proc Natl Acad Sci U S A. 2017 Mar 14;114(11):E2077-E2085. doi: 10.1073/pnas.1619581114. Epub 2017 Mar 6.
2
Riboswitch-Mediated Gene Regulation: Novel RNA Architectures Dictate Gene Expression Responses.
Annu Rev Microbiol. 2016 Sep 8;70:361-74. doi: 10.1146/annurev-micro-091014-104306.
3
Mechanistic Insights into Cofactor-Dependent Coupling of RNA Folding and mRNA Transcription/Translation by a Cobalamin Riboswitch.
Cell Rep. 2016 May 3;15(5):1100-1110. doi: 10.1016/j.celrep.2016.03.087. Epub 2016 Apr 21.
4
Photolytic properties of cobalamins: a theoretical perspective.
Dalton Trans. 2016 Mar 21;45(11):4457-70. doi: 10.1039/c5dt04286k. Epub 2016 Feb 11.
6
Diversity of cobalamin riboswitches in the corrinoid-producing organohalide respirer Desulfitobacterium hafniense.
J Bacteriol. 2013 Nov;195(22):5186-95. doi: 10.1128/JB.00730-13. Epub 2013 Sep 13.
7
Structure and function of the T-loop structural motif in noncoding RNAs.
Wiley Interdiscip Rev RNA. 2013 Sep-Oct;4(5):507-22. doi: 10.1002/wrna.1175. Epub 2013 Jun 10.
8
Modularity of select riboswitch expression platforms enables facile engineering of novel genetic regulatory devices.
ACS Synth Biol. 2013 Aug 16;2(8):463-72. doi: 10.1021/sb4000096. Epub 2013 Mar 28.
9
A bright monomeric green fluorescent protein derived from Branchiostoma lanceolatum.
Nat Methods. 2013 May;10(5):407-9. doi: 10.1038/nmeth.2413. Epub 2013 Mar 24.
10
Nucleotides adjacent to the ligand-binding pocket are linked to activity tuning in the purine riboswitch.
J Mol Biol. 2013 May 27;425(10):1596-611. doi: 10.1016/j.jmb.2013.02.023. Epub 2013 Feb 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验