Suppr超能文献

核糖开关结构的生物信息学分析揭示了具有改变的配体特异性的变体类别。

Bioinformatic analysis of riboswitch structures uncovers variant classes with altered ligand specificity.

作者信息

Weinberg Zasha, Nelson James W, Lünse Christina E, Sherlock Madeline E, Breaker Ronald R

机构信息

Howard Hughes Medical Institute, Yale University, New Haven, CT 06520.

Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520.

出版信息

Proc Natl Acad Sci U S A. 2017 Mar 14;114(11):E2077-E2085. doi: 10.1073/pnas.1619581114. Epub 2017 Mar 6.

Abstract

Riboswitches are RNAs that form complex, folded structures that selectively bind small molecules or ions. As with certain groups of protein enzymes and receptors, some riboswitch classes have evolved to change their ligand specificity. We developed a procedure to systematically analyze known riboswitch classes to find additional variants that have altered their ligand specificity. This approach uses multiple-sequence alignments, atomic-resolution structural information, and riboswitch gene associations. Among the discoveries are unique variants of the guanine riboswitch class that most tightly bind the nucleoside 2'-deoxyguanosine. In addition, we identified variants of the glycine riboswitch class that no longer recognize this amino acid, additional members of a rare flavin mononucleotide (FMN) variant class, and also variants of c-di-GMP-I and -II riboswitches that might recognize different bacterial signaling molecules. These findings further reveal the diverse molecular sensing capabilities of RNA, which highlights the potential for discovering a large number of additional natural riboswitch classes.

摘要

核糖开关是形成复杂折叠结构的RNA,可选择性结合小分子或离子。与某些蛋白质酶和受体组一样,一些核糖开关类别已经进化以改变其配体特异性。我们开发了一种程序来系统分析已知的核糖开关类别,以找到改变其配体特异性的其他变体。这种方法使用多序列比对、原子分辨率结构信息和核糖开关基因关联。在这些发现中,有鸟嘌呤核糖开关类别的独特变体,它们与核苷2'-脱氧鸟苷结合最紧密。此外,我们鉴定出不再识别这种氨基酸的甘氨酸核糖开关类别的变体、一种罕见的黄素单核苷酸(FMN)变体类别的其他成员,以及可能识别不同细菌信号分子的c-di-GMP-I和-II核糖开关的变体。这些发现进一步揭示了RNA多样的分子传感能力,这突出了发现大量其他天然核糖开关类别的潜力。

相似文献

1
Bioinformatic analysis of riboswitch structures uncovers variant classes with altered ligand specificity.
Proc Natl Acad Sci U S A. 2017 Mar 14;114(11):E2077-E2085. doi: 10.1073/pnas.1619581114. Epub 2017 Mar 6.
2
Variants of the guanine riboswitch class exhibit altered ligand specificities for xanthine, guanine, or 2'-deoxyguanosine.
Proc Natl Acad Sci U S A. 2022 May 31;119(22):e2120246119. doi: 10.1073/pnas.2120246119. Epub 2022 May 27.
3
Structural basis of differential ligand recognition by two classes of bis-(3'-5')-cyclic dimeric guanosine monophosphate-binding riboswitches.
Proc Natl Acad Sci U S A. 2011 May 10;108(19):7757-62. doi: 10.1073/pnas.1018857108. Epub 2011 Apr 25.
4
Structural basis for 2'-deoxyguanosine recognition by the 2'-dG-II class of riboswitches.
Nucleic Acids Res. 2019 Nov 18;47(20):10931-10941. doi: 10.1093/nar/gkz839.
5
Differential analogue binding by two classes of c-di-GMP riboswitches.
J Am Chem Soc. 2011 Oct 5;133(39):15578-92. doi: 10.1021/ja204650q. Epub 2011 Sep 8.
6
Rare variants of the FMN riboswitch class in and other bacteria exhibit altered ligand specificity.
RNA. 2019 Jan;25(1):23-34. doi: 10.1261/rna.067975.118. Epub 2018 Oct 4.
7
9
Sensitive and specific detection of ligands using engineered riboswitches.
J Biotechnol. 2018 Apr 20;272-273:22-32. doi: 10.1016/j.jbiotec.2018.03.002. Epub 2018 Mar 5.
10
Adenine protonation enables cyclic-di-GMP binding to cyclic-GAMP sensing riboswitches.
RNA. 2018 Oct;24(10):1390-1402. doi: 10.1261/rna.067470.118. Epub 2018 Jul 13.

引用本文的文献

1
Structure-based insights into the ligand specificity tuning of 2'-dG-III riboswitch.
Nucleic Acids Res. 2025 Aug 11;53(15). doi: 10.1093/nar/gkaf773.
3
Knotty is nice: Metabolite binding and RNA-mediated gene regulation by the preQ riboswitch family.
J Biol Chem. 2024 Dec;300(12):107951. doi: 10.1016/j.jbc.2024.107951. Epub 2024 Oct 30.
5
A spermidine riboswitch class in bacteria exploits a close variant of an aptamer for the enzyme cofactor S-adenosylmethionine.
Cell Rep. 2023 Dec 26;42(12):113571. doi: 10.1016/j.celrep.2023.113571. Epub 2023 Dec 12.
6
8-oxoguanine riboswitches in bacteria detect and respond to oxidative DNA damage.
Proc Natl Acad Sci U S A. 2023 Oct 3;120(40):e2307854120. doi: 10.1073/pnas.2307854120. Epub 2023 Sep 25.
7
A conserved uORF in the mRNA of species regulates operon expression.
Microb Genom. 2023 May;9(5). doi: 10.1099/mgen.0.001019.
9
Exploiting natural riboswitches for aptamer engineering and validation.
Nucleic Acids Res. 2023 Jan 25;51(2):966-981. doi: 10.1093/nar/gkac1218.
10
A variant of guanidine-IV riboswitches exhibits evidence of a distinct ligand specificity.
RNA Biol. 2023 Jan;20(1):10-19. doi: 10.1080/15476286.2022.2160562.

本文引用的文献

1
Metabolism of Free Guanidine in Bacteria Is Regulated by a Widespread Riboswitch Class.
Mol Cell. 2017 Jan 19;65(2):220-230. doi: 10.1016/j.molcel.2016.11.019. Epub 2016 Dec 15.
2
A statistical test for conserved RNA structure shows lack of evidence for structure in lncRNAs.
Nat Methods. 2017 Jan;14(1):45-48. doi: 10.1038/nmeth.4066. Epub 2016 Nov 7.
3
Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation.
Nucleic Acids Res. 2016 Jan 4;44(D1):D733-45. doi: 10.1093/nar/gkv1189. Epub 2015 Nov 8.
4
New classes of self-cleaving ribozymes revealed by comparative genomics analysis.
Nat Chem Biol. 2015 Aug;11(8):606-10. doi: 10.1038/nchembio.1846. Epub 2015 Jul 13.
5
Control of bacterial exoelectrogenesis by c-AMP-GMP.
Proc Natl Acad Sci U S A. 2015 Apr 28;112(17):5389-94. doi: 10.1073/pnas.1419264112. Epub 2015 Apr 6.
6
GEMM-I riboswitches from Geobacter sense the bacterial second messenger cyclic AMP-GMP.
Proc Natl Acad Sci U S A. 2015 Apr 28;112(17):5383-8. doi: 10.1073/pnas.1419328112. Epub 2015 Apr 6.
7
Mn(2+)-sensing mechanisms of yybP-ykoY orphan riboswitches.
Mol Cell. 2015 Mar 19;57(6):1110-1123. doi: 10.1016/j.molcel.2015.02.016.
8
The ubiquitous yybP-ykoY riboswitch is a manganese-responsive regulatory element.
Mol Cell. 2015 Mar 19;57(6):1099-1109. doi: 10.1016/j.molcel.2015.01.035.
10
CDD: NCBI's conserved domain database.
Nucleic Acids Res. 2015 Jan;43(Database issue):D222-6. doi: 10.1093/nar/gku1221. Epub 2014 Nov 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验