Howard Hughes Medical Institute, Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720-3102.
Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA 90095.
Proc Natl Acad Sci U S A. 2017 May 23;114(21):E4296-E4305. doi: 10.1073/pnas.1619928114. Epub 2017 May 8.
Microalgae have potential to help meet energy and food demands without exacerbating environmental problems. There is interest in the unicellular green alga , because it produces lipids for biofuels and a highly valuable carotenoid nutraceutical, astaxanthin. To advance understanding of its biology and facilitate commercial development, we present a chromosome-level nuclear genome, organelle genomes, and transcriptome from diverse growth conditions. The assembly, derived from a combination of short- and long-read sequencing in conjunction with optical mapping, revealed a compact genome of ∼58 Mbp distributed over 19 chromosomes containing 15,274 predicted protein-coding genes. The genome has uniform gene density over chromosomes, low repetitive sequence content (∼6%), and a high fraction of protein-coding sequence (∼39%) with relatively long coding exons and few coding introns. Functional annotation of gene models identified orthologous families for the majority (∼73%) of genes. Synteny analysis uncovered localized but scrambled blocks of genes in putative orthologous relationships with other green algae. Two genes encoding beta-ketolase (), the key enzyme synthesizing astaxanthin, were found in the genome, and both were up-regulated by high light. Isolation and molecular analysis of astaxanthin-deficient mutants showed that is required for the production of astaxanthin. Moreover, the transcriptome under high light exposure revealed candidate genes that could be involved in critical yet missing steps of astaxanthin biosynthesis, including ABC transporters, cytochrome P450 enzymes, and an acyltransferase. The high-quality genome and transcriptome provide insight into the green algal lineage and carotenoid production.
微藻具有在不加剧环境问题的情况下帮助满足能源和粮食需求的潜力。人们对单细胞绿藻感兴趣,因为它生产生物燃料用的脂质和一种极具价值的类胡萝卜素营养保健品虾青素。为了增进对其生物学的理解并促进商业开发,我们呈现了来自不同生长条件的染色体水平的核基因组、细胞器基因组和转录组。该组装体是通过短读长和长读长测序与光学图谱相结合获得的,揭示了一个约 58 Mbp 的紧凑型基因组,分布在 19 条染色体上,包含 15274 个预测的蛋白质编码基因。该基因组的染色体上具有均匀的基因密度、低重复序列含量(约 6%)和高比例的蛋白质编码序列(约 39%),具有相对较长的编码外显子和较少的编码内含子。基因模型的功能注释确定了大多数(约 73%)基因的同源家族。同线性分析揭示了与其他绿藻具有假定同源关系的基因中的局部但混乱的基因块。在基因组中发现了编码β-酮酶()的两个基因,该酶是合成虾青素的关键酶,两者均受高光诱导而上调。虾青素缺陷突变体的分离和分子分析表明,对于虾青素的产生,需要 。此外,高光暴露下的转录组揭示了可能参与虾青素生物合成中关键但缺失步骤的候选基因,包括 ABC 转运蛋白、细胞色素 P450 酶和酰基转移酶。高质量的基因组和转录组为绿藻谱系和类胡萝卜素生产提供了深入的了解。