School of Information Science and Engineering, University of Jinan, Jinan, 250022, China.
School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
Sci Rep. 2017 May 8;7(1):1568. doi: 10.1038/s41598-017-01733-0.
To investigate the correlations between hyper-reflective foci and hard exudates in patients with non-proliferative diabetic retinopathy (NPDR) and proliferative diabetic retinopathy (PDR) by spectral-domain optical coherence tomography (SD OCT) images. Hyper-reflective foci in retinal SD OCT images were automatically detected by the developed algorithm. Then, the cropped CFP images generated by the semi-automatic registration method were automatically segmented for the hard exudates and corrected by the experienced clinical ophthalmologist. Finally, a set of 5 quantitative imaging features were automatically extracted from SD OCT images, which were used for investigating the correlations of hyper-reflective foci and hard exudates and predicting the severity of diabetic retinopathy. Experimental results demonstrated the positive correlations in area and amount between hard exudates and hyper-reflective foci at different stages of diabetic retinopathy, with statistical significance (all p < 0.05). In addition, the area and amount can be taken as potential discriminant indicators of the severity of diabetic retinopathy.
利用频域光相干断层扫描(SD OCT)图像,研究非增殖性糖尿病视网膜病变(NPDR)和增殖性糖尿病视网膜病变(PDR)患者的高反射病灶与硬性渗出物之间的相关性。通过开发的算法自动检测视网膜 SD OCT 图像中的高反射病灶。然后,通过半自动注册方法生成裁剪后的 CFP 图像,由经验丰富的临床眼科医生对硬性渗出物进行自动分割和校正。最后,从 SD OCT 图像中自动提取了一组 5 种定量成像特征,用于研究高反射病灶与硬性渗出物之间的相关性,并预测糖尿病视网膜病变的严重程度。实验结果表明,在糖尿病视网膜病变的不同阶段,硬性渗出物与高反射病灶在面积和数量上均存在正相关,且具有统计学意义(均 P < 0.05)。此外,面积和数量可作为糖尿病视网膜病变严重程度的潜在判别指标。
Biomed Tech (Berl). 2019-5-27
Invest Ophthalmol Vis Sci. 2014-3-13
Invest Ophthalmol Vis Sci. 2014-10-9
Invest Ophthalmol Vis Sci. 2014-3-13