Suppr超能文献

基于 UNET++和基于高亮反射点特征的袋装树集成的 OCT 图像自动渗出物和动脉瘤分割。

Automatic exudate and aneurysm segmentation in OCT images using UNET++ and hyperreflective-foci feature based bagged tree ensemble.

机构信息

School of Information, Computer and Communication Technology, Sirindhorn International Institute of Technology, Thammasat University, Meung, Patumthani, Thailand.

出版信息

PLoS One. 2024 May 24;19(5):e0304146. doi: 10.1371/journal.pone.0304146. eCollection 2024.

Abstract

Diabetic retinopathy's signs, such as exudates (EXs) and aneurysms (ANs), initially develop from under the retinal surface detectable from optical coherence tomography (OCT) images. Detecting these signs helps ophthalmologists diagnose DR sooner. Detecting and segmenting exudates (EXs) and aneurysms (ANs) in medical images is challenging due to their small size, similarity to other hyperreflective regions, noise presence, and low background contrast. Furthermore, the scarcity of public OCT images featuring these abnormalities has limited the number of studies related to the automatic segmentation of EXs and ANs, and the reported performance of such studies has not been satisfactory. This work proposes an efficient algorithm that can automatically segment these anomalies by improving key steps in the process. The potential area where these hyper-reflective EXs and ANs occur was scoped by our method using a deep-learning U-Net++ program. From this area, the candidates for EX-AN were segmented using the adaptive thresholding method. Nine features based on appearances, locations, and shadow markers were extracted from these candidates. They were trained and tested using bagged tree ensemble classifiers to obtain only EX-AN blobs. The proposed method was tested on a collection of a public dataset comprising 80 images with hand-drawn ground truths. The experimental results showed that our method could segment EX-AN blobs with average recall, precision, and F1-measure as 87.9%, 86.1%, and 87.0%, respectively. Its F1-measure drastically outperformed two comparative methods, binary thresholding and watershed (BT-WS) and adaptive thresholding with shadow tracking (AT-ST), by 78.0% and 82.1%, respectively.

摘要

糖尿病性视网膜病变的特征,如渗出物(EX)和动脉瘤(AN),最初是从光学相干断层扫描(OCT)图像中可检测到的视网膜下表面开始发展的。检测这些特征有助于眼科医生更早地诊断 DR。由于其尺寸小、与其他高反射区域相似、存在噪声以及背景对比度低,因此在医学图像中检测和分割渗出物(EX)和动脉瘤(AN)具有挑战性。此外,由于缺乏包含这些异常的公共 OCT 图像,因此与 EX 和 AN 的自动分割相关的研究数量有限,并且这些研究的报告性能并不令人满意。这项工作提出了一种有效的算法,可以通过改进该过程中的关键步骤来自动分割这些异常。我们的方法使用深度学习 U-Net++ 程序来确定这些高反射 EX 和 AN 可能出现的潜在区域。从该区域中,使用自适应阈值方法分割 EX-AN 的候选者。从这些候选者中提取了基于外观、位置和阴影标记的九个特征。使用袋装树集成分类器对它们进行训练和测试,以获得仅 EX-AN 斑点。该方法在包含 80 张手绘地面实况图像的公共数据集上进行了测试。实验结果表明,我们的方法可以以平均召回率、精度和 F1 分数分别为 87.9%、86.1%和 87.0%来分割 EX-AN 斑点。与比较方法,即二值阈值和分水岭(BT-WS)以及具有阴影跟踪的自适应阈值(AT-ST)相比,其 F1 分数分别高出 78.0%和 82.1%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ebde/11125471/ddfa7c0b2343/pone.0304146.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验