Quiclet-Sire Béatrice, Zard Samir Z
Laboratoire de Synthèse Organique, CNRS UMR 7652, Ecole Polytechnique, 91128 Palaiseau, France.
Proc Math Phys Eng Sci. 2017 Apr;473(2200):20160859. doi: 10.1098/rspa.2016.0859. Epub 2017 Apr 5.
The ability to create carbon-carbon bonds is at the heart of organic synthesis. Radical processes are particularly apt at creating such bonds, especially in cascade or relay sequences where more than one bond is formed, allowing for a rapid assembly of complex structures. In the present brief overview, examples taken from the authors' laboratory will serve to illustrate the strategic impact of radical-based approaches on synthetic planning. Transformations involving nitrogen-centred radicals, electron transfer from metallic nickel and the reversible degenerative exchange of xanthates will be presented and discussed. The last method has proved to be a particularly powerful tool for the creation of carbon-carbon bonds by radical additions even to unactivated alkenes. Various functional groups can be brought into the same molecule in a convergent manner and made to react together in order to further increase the structural complexity. One important benefit of this chemistry is the so-called RAFT/MADIX technology for the manufacture of block copolymers of almost any desired architecture.
形成碳-碳键的能力是有机合成的核心。自由基反应过程在形成此类键方面特别适用,尤其是在形成多个键的串联或接力序列中,能够快速组装复杂结构。在本简要概述中,取自作者实验室的实例将用于说明基于自由基方法对合成规划的战略影响。将介绍并讨论涉及氮中心自由基的转化、金属镍的电子转移以及黄原酸酯的可逆降解交换。最后一种方法已被证明是通过自由基加成形成碳-碳键的特别强大的工具,甚至可以加成到未活化的烯烃上。各种官能团可以以汇聚的方式引入到同一分子中并使其一起反应,以进一步增加结构复杂性。这种化学的一个重要优点是所谓的RAFT/MADIX技术,用于制造几乎任何所需结构的嵌段共聚物。