Suppr超能文献

接受结肠切除术患者常规收集的合并症数据的准确性:一项回顾性研究。

Accuracy of routinely collected comorbidity data in patients undergoing colectomy: a retrospective study.

作者信息

Hajibandeh Shahin, Hajibandeh Shahab, Deering Roger, McEleney Dearbhla, Guirguis John, Dix Sarah, Sreh Abdelhakem, Kausar Afsana

机构信息

Department of General Surgery, Royal Blackburn Hospital, Blackburn, UK.

Department of General Surgery, Royal Albert Edward Infirmary, Wigan, UK.

出版信息

Int J Colorectal Dis. 2017 Sep;32(9):1341-1344. doi: 10.1007/s00384-017-2830-8. Epub 2017 May 8.

Abstract

OBJECTIVES

This paper aimed to determine the baseline accuracy, sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) of routinely collected comorbidity data in patients undergoing any types of colectomy.

METHODS

All patients aged >18 who underwent right hemicolectomy, left hemicolectomy, sigmoid colectomy, subtotal colectomy, or total colectomy between 1 January 2015 and 1 November 2016 were identified. The following comorbidities were considered: hypertension, ischemic heart disease (IHD), diabetes, asthma, chronic obstructive pulmonary disease (COPD), cerebrovascular disease (CVD), chronic kidney disease (CKD), and hypercholesterolemia. The comorbidity data from clinical notes were compared with corresponding data in hospital episode statistics (HES) database in order to calculate accuracy, sensitivity, specificity, PPV, and NPV of HES codes for comorbidities. In order to assess the agreement between clinical notes and HES data, we also calculated Cohen's kappa index value as a more robust measure of agreement.

RESULTS

Overall, 267 patients comprising 2136 comorbidity codes were included. Overall, HES codes for comorbidities in patients undergoing colectomy had substandard accuracy 94% (kappa 0.542), sensitivity (39%), and NPV (89%). The HES codes were 100% specific with PPV of 100%. The results were consistent when individual comorbidities were analyzed separately.

CONCLUSIONS

Our results demonstrated that HES comorbidity codes in patients undergoing colectomy are specific with good positive predictive value; however, they have substandard accuracy, sensitivity, and negative predictive value. Better documentation of comorbidities in admission clerking proforma may help to improve the quality of source documents for coders, which in turn may improve the accuracy of coding.

摘要

目的

本文旨在确定接受任何类型结肠切除术患者常规收集的合并症数据的基线准确性、敏感性、特异性、阳性预测值(PPV)和阴性预测值(NPV)。

方法

确定了2015年1月1日至2016年11月1日期间接受右半结肠切除术、左半结肠切除术、乙状结肠切除术、次全结肠切除术或全结肠切除术的所有年龄大于18岁的患者。考虑了以下合并症:高血压、缺血性心脏病(IHD)、糖尿病、哮喘、慢性阻塞性肺疾病(COPD)、脑血管疾病(CVD)、慢性肾脏病(CKD)和高胆固醇血症。将临床记录中的合并症数据与医院病历统计(HES)数据库中的相应数据进行比较,以计算HES合并症编码的准确性、敏感性、特异性、PPV和NPV。为了评估临床记录与HES数据之间的一致性,我们还计算了科恩kappa指数值,作为一种更可靠的一致性测量方法。

结果

总体而言,纳入了267例患者,共2136个合并症编码。总体而言,接受结肠切除术患者的合并症HES编码准确性为94%(kappa 0.542)、敏感性为39%、NPV为89%,均未达标准。HES编码特异性为100%,PPV为100%。单独分析各合并症时结果一致。

结论

我们的结果表明,接受结肠切除术患者的HES合并症编码具有特异性,阳性预测值良好;然而,其准确性、敏感性和阴性预测值未达标准。在入院登记表中更好地记录合并症可能有助于提高编码员源文档的质量,进而提高编码准确性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验