Suppr超能文献

抗坏血酸氧化及HOO˙/O˙自由基清除的理论研究

A theoretical study of ascorbic acid oxidation and HOO˙/O˙ radical scavenging.

作者信息

Tu Yi-Jung, Njus David, Schlegel H Bernhard

机构信息

Department of Chemistry, Wayne State University, Detroit, MI 48202, USA.

出版信息

Org Biomol Chem. 2017 May 23;15(20):4417-4431. doi: 10.1039/c7ob00791d.

Abstract

Ascorbic acid is a well-known antioxidant and radical scavenger. It can be oxidized by losing two protons and two electrons, but normally loses only one electron at a time. The reactivity of the ascorbate radical is unusual, in that it can either disproportionate or react with other radicals, but it reacts poorly with non-radical species. To explore the oxidation mechanism of ascorbic acid, the pK's and reduction potentials have been calculated using the B3LYP/6-31+G(d,p) and CBS-QB3 levels of theory with the SMD implicit solvent model and explicit waters. Calculations show that the most stable form of dehydroascorbic acid in water is the bicyclic hydrated structure, in agreement with NMR studies. The possible oxidation reactions at different pH conditions can be understood by constructing a potential-pH (Pourbaix) diagram from the calculated pK's and standard reduction potentials. At physiological pH disproportionation of the intermediate radical is thermodynamically favored. The calculations show that disproportionation proceeds via dimerization of ascorbate radical and internal electron transfer, as suggested by Bielski. In the dimer, one of the ascorbate units cyclizes. Then protonation and dissociation yields the fully reduced and bicyclic fully oxidized structures. Calculations show that this mechanism also explains the reaction of the ascorbic acid radical with other radical species such as superoxide. Ascorbate radical combines with the radical, and intramolecular electron transfer followed by cyclization and hydrolysis yields dehydroascorbic acid and converts the radical to its reduced form.

摘要

抗坏血酸是一种著名的抗氧化剂和自由基清除剂。它可以通过失去两个质子和两个电子而被氧化,但通常一次只失去一个电子。抗坏血酸自由基的反应性不同寻常,因为它既可以发生歧化反应,也可以与其他自由基反应,但与非自由基物种的反应性较差。为了探究抗坏血酸的氧化机制,我们使用B3LYP/6 - 31 + G(d,p)和CBS - QB3理论水平,并结合SMD隐式溶剂模型和显式水分子,计算了其pK值和还原电位。计算结果表明,脱氢抗坏血酸在水中最稳定的形式是双环水合结构,这与核磁共振研究结果一致。通过根据计算得到的pK值和标准还原电位构建电位 - pH(Pourbaix)图,可以理解不同pH条件下可能发生的氧化反应。在生理pH值下,中间自由基的歧化反应在热力学上是有利的。计算结果表明,歧化反应是通过抗坏血酸自由基的二聚化和内部电子转移进行的,正如Bielski所提出的那样。在二聚体中,一个抗坏血酸单元发生环化。然后质子化和解离产生完全还原的结构和双环完全氧化的结构。计算结果表明,该机制也解释了抗坏血酸自由基与其他自由基物种(如超氧化物)的反应。抗坏血酸自由基与该自由基结合,随后进行分子内电子转移、环化和水解,生成脱氢抗坏血酸,并将该自由基转化为其还原形式。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验