Department of Physics, National University of Singapore , 117551 Singapore.
Centre for BioImaging Sciences and Department of Biological Sciences, National University of Singapore , 117557 Singapore.
Acc Chem Res. 2017 Jun 20;50(6):1303-1312. doi: 10.1021/acs.accounts.7b00063. Epub 2017 May 9.
Hierarchically organized nanoparticles (NPs) possess unique properties and are relevant to various technological applications. An important "bottom-up" strategy for building such hierarchical nanostructures is to guide the individual NPs into ordered nanoarchitectures using intermolecular interactions and external forces. However, our current understanding of the nanoscale interactions that govern such self-assembly processes usually relies on post-synthesis/assembly or indirect characterization. Theoretical models that can derive these interactions are presently constrained to systems with only a few particles or on short time scales. Hence, except for a number of special cases, a description that captures the detailed mechanisms of NP self-assembly still eludes us. By imaging the assembly of NPs in solution with subnanometer resolution and in real-time, in situ liquid cell transmission electron microscopy (LC-TEM) can identify previously unknown intermediate stages and improve our understanding of such processes. Here, we review recent studies where we explored NP self-assembly at different organization length scales using LC-TEM: (1) we followed the transformation of atoms into crystalline NPs in solution, (2) we highlighted the role of solvation forces on interaction dynamics between NPs, and (3) we described the assembly dynamics of NPs in solution. In the case of nanocrystal nucleation, we identified the existence of three distinct steps that lead to the formation of crystalline nuclei in solution. These steps are spinodal decomposition of the precursor solution into solute-rich and solute-poor liquid phases, nucleation of amorphous clusters within the solute-rich liquid phase, followed by crystallization of these amorphous clusters into crystalline NPs. The next question we ask is how NPs interact in solution once they form. It turns out that the hydration layer surrounding each NP acts as a repulsive barrier that prevents NPs from readily attaching to each other due to attractive vdW forces. Consequently, two interacting NPs form a metastable pair separated by their one water molecule thick hydration shell and they undergo attachment only when this water between them is drained. Next, we explore the self-assembly of many NP systems where the formation of linear chains from spherical NPs or nanorods (NRs) is mediated by linker molecules. At low linker concentration, both spherical NPs and NRs tend to form linear chains because of the need to reduce electrostatic repulsion between NP building blocks. When the concentration of linkers is increased, the attachment of NPs is no longer linear. For example, we find that two NRs undergo side-to-side assembly due to decreased electrostatic repulsion and the anisotropic distribution of linkers on NR surfaces at high linker concentration. Lastly, we look at the formation of NP nanorings directed by ethylenediaminetetraacetic acid (EDTA) nanodroplets in water. Our study shows that nanoring assemblies form via sequential attachment of NPs to binding sites located along the circumference of the EDTA nanodroplet, followed by rearrangement and reorientation of the attached NPs. Our approach based on real-time visualization of nanoscale processes not only reveals all the intermediate steps of NP assembly, but also provides quantitative description on the interactions between nanoscale objects in solution.
层次化纳米粒子(NPs)具有独特的性质,与各种技术应用相关。构建这种层次结构纳米结构的一个重要的“自下而上”策略是利用分子间相互作用和外部力将单个 NPs 引导到有序的纳米结构中。然而,我们目前对控制这种自组装过程的纳米尺度相互作用的理解通常依赖于合成/组装后的或间接的表征。目前,能够推导出这些相互作用的理论模型仅限于只有少数几个粒子的系统或在短时间尺度上。因此,除了一些特殊情况外,我们仍然无法捕捉到 NP 自组装的详细机制。通过使用亚纳米分辨率的原位液体池透射电子显微镜(LC-TEM)实时成像溶液中的 NPs 组装,可以识别以前未知的中间阶段,并提高我们对这些过程的理解。在这里,我们回顾了最近的一些研究,这些研究使用 LC-TEM 研究了不同组织长度尺度的 NP 自组装:(1)我们跟踪了原子在溶液中转化为结晶 NPs 的过程,(2)我们强调了溶剂化力对 NPs 之间相互作用动力学的作用,(3)我们描述了溶液中 NPs 的组装动力学。在纳米晶成核的情况下,我们确定了导致溶液中结晶核形成的三个不同步骤的存在。这些步骤是前驱体溶液的旋节分解为溶质富相和贫相液体相,溶质富相中的无定形团簇的成核,以及这些无定形团簇的结晶成晶核。接下来我们要问的问题是,一旦 NPs 形成,它们在溶液中是如何相互作用的。事实证明,包围每个 NP 的水合层充当了一个排斥屏障,由于范德华力的吸引力,阻止 NPs 轻易地相互附着。因此,两个相互作用的 NPs 形成一个由它们的一个水分子厚的水合壳隔开的亚稳态对,并且只有当它们之间的水被排出时,它们才会附着。接下来,我们研究了由球形 NPs 或纳米棒(NRs)形成的线性链的许多 NP 体系的自组装,其中线性链的形成是由连接分子介导的。在低连接分子浓度下,球形 NPs 和 NRs 都倾向于形成线性链,因为需要减少 NP 构建块之间的静电排斥。当连接分子的浓度增加时,NP 的附着不再是线性的。例如,我们发现,由于静电排斥的降低和高连接分子浓度下 NR 表面上连接分子的各向异性分布,两个 NR 会发生侧向组装。最后,我们研究了由乙二胺四乙酸(EDTA)液滴在水中形成的 NP 纳米环的形成。我们的研究表明,纳米环组装是通过 NP 依次附着在位于 EDTA 液滴圆周上的结合位点上形成的,然后是附着的 NP 的重排和重定向。我们基于实时可视化纳米尺度过程的方法不仅揭示了 NP 组装的所有中间步骤,而且还提供了对溶液中纳米尺度物体之间相互作用的定量描述。