Suppr超能文献

动态纳米粒子组装体。

Dynamic nanoparticle assemblies.

机构信息

School of Food Science and Technology, Jiangnan University, Wuxi, JiangSu, 14122, People's Republic of China.

出版信息

Acc Chem Res. 2012 Nov 20;45(11):1916-26. doi: 10.1021/ar200305f. Epub 2012 Mar 26.

Abstract

Although nanoparticle (NP) assemblies are at the beginning of their development, their unique geometrical shapes and media-responsive optical, electronic, and magnetic properties have attracted significant interest. Nanoscale assembly bridges multiple levels of hierarchy of materials: individual nanoparticles, discrete molecule-like or virus-like nanoscale agglomerates, microscale devices, and macroscale materials. The capacity to self-assemble can greatly facilitate the integration of nanotechnology with other technologies and, in particular, with microscale fabrication. In this Account, we describe developments in the emerging field of dynamic NP assemblies, which are spontaneously form superstructures containing more than two inorganic nanoscale particles that display the ability to change their geometrical, physical, chemical, and other attributes. In many ways, dynamic assemblies can represent a bottleneck in the "bottom-up" fabrication of NP-based devices because they can produce a much greater variety of assemblies, but they also provide a convenient tool for variation of geometries and dimensions of nanoparticle assemblies. Superstructures of NPs (and those held together by similar intrinsic forces)are classified into two groups: Class 1 where media and external fields can alter shape, conformation, and order of stable super structures with a nearly constant number of NPs or Class 2 where the total number of NPs changes, while the organizational motif in the final superstructure remains the same. The future development of successful dynamic assemblies requires understanding the equilibrium in dynamic NP systems. The dynamic nature of Class 1 assemblies is associated with the equilibrium between different conformations of a superstructure and is comparable to the isomerization in classical chemistry. Class 2 assemblies involve the formation or breakage of linkages between the NPs, which is analogous to the classical chemical equilibrium for the formation of a molecule from atoms. Finer classification of NP assemblies in accord with established conventions in the field may include different size dimensionalities: discrete assemblies (artificial molecules) and one-dimensional (spaced chains), two-dimensional (sheets), and three-dimensional (superlattices, twisted structures) assemblies. Notably, these dimensional attributes must be regarded as primarily topological in nature because all of these superstructures can acquire complex three-dimensional shapes. We discuss three primary strategies used to prepare NP superstructures: (1) anisotropy-based assemblies utilizing either intrinsic force field anisotropy around NPs or external anisotropy associated with templates or applied fields, (2) assembly methods utilizing uniform NPs with isotropic interactions, and (3) methods based on mutual recognition of biomolecules, such as DNA and antigen-antibody interactions. We consider optical, electronic, and magnetic properties of dynamic superstructures, focusing primarily on multiparticle effects in NP superstructures as represented by surface plasmon resonance, NP-NP charge transport, and multibody magnetization. Unique properties of NP superstructures are being applied to biosensing, drug delivery, and nanoelectronics. For both Class 1 and Class 2 dynamic assemblies, biosensing is the most dominant and well-developed area of dynamic nanostructures being successfully transitioned into practice. We can foresee the rapid development of dynamic NP assemblies toward applications in harvesting of dissipated energy, photonics, and electronics. The final part of this Account is devoted to the fundamental questions facing dynamic assemblies of NPs in the future.

摘要

尽管纳米粒子 (NP) 组装处于起步阶段,但它们独特的几何形状和对光、电、磁等外部刺激响应的特性引起了人们的极大兴趣。纳米级组装连接了材料多层次的结构:单个纳米粒子、离散的类分子或类病毒的纳米级聚集体、微尺度器件和宏观材料。自组装的能力极大地促进了纳米技术与其他技术的融合,特别是与微尺度制造的融合。在本综述中,我们描述了动态 NP 组装这一新兴领域的发展情况,这些组装体是由两个以上的无机纳米级粒子自发形成的超结构,这些超结构表现出改变其几何形状、物理、化学和其他属性的能力。在许多方面,动态组装体可能是基于 NP 的器件“自下而上”制造的一个瓶颈,因为它们可以产生更多种类的组装体,但它们也为改变纳米粒子组装体的几何形状和尺寸提供了一个方便的工具。纳米粒子的超结构(以及由类似内在力结合在一起的超结构)可分为两类:第一类中,介质和外部场可以改变具有几乎恒定数量 NP 的稳定超结构的形状、构象和顺序;而第二类中,NP 的总数发生变化,而最终超结构的组织模式保持不变。成功的动态组装体的未来发展需要理解动态 NP 系统中的平衡。第一类组装体的动态特性与超结构不同构象之间的平衡有关,与经典化学中的异构化相当。第二类组装体涉及 NP 之间键的形成或断裂,这类似于原子形成分子的经典化学平衡。根据该领域已有的约定对 NP 组装体进行更精细的分类可能包括不同的尺寸维度:离散组装体(人工分子)和一维(间隔链)、二维(薄片)和三维(超晶格、扭曲结构)组装体。值得注意的是,这些维度属性必须主要被视为拓扑性质,因为所有这些超结构都可以获得复杂的三维形状。我们讨论了制备 NP 超结构的三种主要策略:(1)利用 NP 周围固有力场各向异性或与模板或施加场相关的外部各向异性的各向异性组装;(2)利用具有各向同性相互作用的均匀 NP 的组装方法;(3)基于生物分子(如 DNA 和抗原-抗体相互作用)相互识别的方法。我们考虑了动态超结构的光学、电子和磁性质,主要关注 NP 超结构中的多粒子效应,如表面等离子体共振、NP-NP 电荷输运和多体磁化。NP 超结构的独特性质正在被应用于生物传感、药物输送和纳米电子学领域。对于第一类和第二类动态组装体,生物传感是动态纳米结构最具优势和最发达的领域,并已成功过渡到实际应用中。我们可以预见,动态 NP 组装体将朝着能量收集、光子学和电子学的应用方向迅速发展。本综述的最后一部分专门讨论了未来动态 NP 组装体面临的基本问题。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab5e/3479329/e210aeab0f12/nihms-366702-f0002.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验