Suppr超能文献

对任意单点突变的蛋白质几何结构和稳定性变化进行大规模预测。

Large-scale prediction of protein geometry and stability changes for arbitrary single point mutations.

作者信息

Bordner A J, Abagyan R A

机构信息

The Scripps Research Institute, 10550 North Torrey Pines Rd., Mail TPC-28, San Diego, California, USA.

出版信息

Proteins. 2004 Nov 1;57(2):400-13. doi: 10.1002/prot.20185.

Abstract

We have developed a method to both predict the geometry and the relative stability of point mutants that may be used for arbitrary mutations. The geometry optimization procedure was first tested on a new benchmark of 2141 ordered pairs of X-ray crystal structures of proteins that differ by a single point mutation, the largest data set to date. An empirical energy function, which includes terms representing the energy contributions of the folded and denatured proteins and uses the predicted mutant side chain conformation, was fit to a training set consisting of half of a diverse set of 1816 experimental stability values for single point mutations in 81 different proteins. The data included a substantial number of small to large residue mutations not considered by previous prediction studies. After removing 22 (approximately 2%) outliers, the stability calculation gave a standard deviation of 1.08 kcal/mol with a correlation coefficient of 0.82. The prediction method was then tested on the remaining half of the experimental data, giving a standard deviation of 1.10 kcal/mol and covariance of 0.66 for 97% of the test set. A regression fit of the energy function to a subset of 137 mutants, for which both native and mutant structures were available, gave a prediction error comparable to that for the complete training set with predicted side chain conformations. We found that about half of the variation is due to conformation-independent residue contributions. Finally, a fit to the experimental stability data using these residue parameters exclusively suggests guidelines for improving protein stability in the absence of detailed structure information.

摘要

我们已经开发出一种方法,可用于预测可能发生任意突变的点突变体的几何结构和相对稳定性。首先,在一个新的基准数据集上测试了几何优化程序,该数据集包含2141对因单点突变而不同的蛋白质X射线晶体结构有序对,这是迄今为止最大的数据集。一个经验能量函数,其中包括代表折叠和变性蛋白质能量贡献的项,并使用预测的突变体侧链构象,被拟合到一个训练集,该训练集由81种不同蛋白质中1816个单点突变的各种实验稳定性值的一半组成。数据中包含大量先前预测研究未考虑的从小残基到大残基的突变。去除22个(约2%)异常值后,稳定性计算的标准差为1.08千卡/摩尔,相关系数为0.82。然后在另一半实验数据上测试预测方法,对于97%的测试集,标准差为1.10千卡/摩尔,协方差为0.66。将能量函数对137个突变体(其天然结构和突变体结构均已知)的子集进行回归拟合,得到的预测误差与使用预测侧链构象的完整训练集相当。我们发现,约一半的变异是由于与构象无关的残基贡献。最后,仅使用这些残基参数对实验稳定性数据进行拟合,为在缺乏详细结构信息的情况下提高蛋白质稳定性提供了指导原则。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验