Grup de Biotecnologia Molecular i Industrial, Centre de Biotecnologia Molecular, Departament d'Enginyeria Química, Universitat Politècnica de Catalunya, Rambla de Sant Nebridi 22, 08222 Terrassa, Catalonia, Spain.
Grup de Biotecnologia Molecular i Industrial, Centre de Biotecnologia Molecular, Departament d'Enginyeria Química, Universitat Politècnica de Catalunya, Rambla de Sant Nebridi 22, 08222 Terrassa, Catalonia, Spain.
Biochim Biophys Acta Mol Basis Dis. 2017 Jul;1863(7):1840-1847. doi: 10.1016/j.bbadis.2017.05.006. Epub 2017 May 6.
Deuteranopia is an X-linked congenital dichromatic condition in which single point mutations in green cone opsin lead to defective non-functional cone photoreceptor cells. Green cone opsin belongs to the G protein-coupled receptor superfamily and consists of a seven transmembrane helical apoprotein covalently bound to 11-cis-retinal, by means of a protonated Schiff base linkage, in its inactive dark state. Several point mutations in green cone opsin have been reported to cause deuteranopia, but the structural details underlying the molecular mechanisms behind the malfunction of mutated opsins have not been clearly established. Here, deutan N94K and R330Q mutants were studied by introducing these substitutions into the native green cone opsin gene by site-directed mutagenesis. The mutant proteins were purified and analyzed using UV-vis spectroscopy and transducin activation assay. We find that the N94K mutant binds the retinal chromophore by means of an unprotonated Schiff base linkage in contrast to previous studies that reported no chromophore regeneration. The other mutant studied, R330Q, showed impaired functionality as measured by its reduced transducin activation ability when compared to wild-type green cone opsin. A double Cys mutant that could form a stabilizing disulfide bond was used in an attempt to address the instability of the green opsin mutants. Our results suggest the presence of key intramolecular networks which may be disrupted in deuteranopia, and these findings could help in finding therapeutic solutions for treating color blindness. Furthermore, our results can also have implications for the study of other visual pigments and other rhodopsin-like G protein-coupled receptors.
绿色视蛋白中的单个点突变导致异常的非功能性视锥感光细胞,从而引起伴性遗传的先天性双色性疾病——绿色视锥营养不良。绿色视蛋白属于 G 蛋白偶联受体超家族,由七个跨膜螺旋的无蛋白共价结合 11-顺式视黄醛组成,通过质子化的席夫碱键结合在其非活性的暗态。已经报道了绿色视蛋白中的几个点突变会导致绿色视锥营养不良,但导致突变视蛋白功能失调的分子机制的结构细节尚未明确确定。在此,通过定点突变将 N94K 和 R330Q 突变引入天然绿色视锥蛋白基因,研究了这些突变。通过紫外可见光谱和转导蛋白激活测定法对突变蛋白进行了纯化和分析。我们发现 N94K 突变体通过未质子化的席夫碱键结合视黄醛发色团,而之前的研究报道没有视黄醛再生。另一个研究的突变体 R330Q 与野生型绿色视锥蛋白相比,其转导蛋白激活能力降低,表明其功能受损。我们使用一个可以形成稳定二硫键的双 Cys 突变体来尝试解决绿色视蛋白突变体的不稳定性问题。我们的结果表明存在关键的分子内网络,这些网络可能在绿色视锥营养不良中被破坏,这些发现有助于寻找治疗色盲的治疗方法。此外,我们的结果还可能对其他视觉色素和其他视紫红质样 G 蛋白偶联受体的研究具有启示意义。